
Transition State Resonances in the Reaction Cl+ H2 f HCl + H

Jay Srinivasan,† Thomas C. Allison,† David W. Schwenke,‡ and Donald G. Truhlar* ,†

Department of Chemistry and Supercomputer Institute, UniVersity of Minnesota,
Minneapolis, Minnesota 55455-0431, and NASA Ames Research Center, Mail Stop 230-3,
Moffett Field, California 94035-1000

ReceiVed: NoVember 30, 1998; In Final Form: January 11, 1999

This paper discusses converged quantum mechanical scattering calculations for the reaction Cl+ H2 f HCl
+ H and its reverse and analyzes them for the properties of quantized dynamical bottlenecks controlling the
total and state-specific microcanonical-ensemble rate constants. These rate constants show clear evidence for
quantized transition states. We assign bend and stretch quantum numbers to the transition states for total
angular momentumJ ) 0 with parityP ) +1, for J ) 1 with P ) +1 and-1, and forJ ) 2 and 6 withP
) +1. Then, state-specific densities of reactive states (transition state spectra) are examined to obtain a detailed
picture of the reaction. A quantal estimate of the rotational constant,B, for several different transition states
is obtained by comparing transition state energies at different values of the total angular momentum. These
quantal estimates are in good agreement with the values calculated from the moments of inertia, and this
enables us to interpret the results in terms of state-dependent geometries for the individual dynamical
bottlenecks. By treating the transition states as poles in the scattering matrix, we also obtain estimates for the
lifetimes of the states. TheJP-specific rate coefficients, the reactant-state-specific rate coefficients, and the
contribution from each transition state to theJP-specific and the reactant-state-specified rate coefficient are
also calculated and the trends analyzed. These trends help explain the dependence of the rate coefficient on
initial vibrational and rotational quantum numbers.

I. Introduction

Recent work has established that the flux through dynamical
bottleneck regions of potential energy surfaces is gated by a
series of quantum mechanical resonances that correspond to
discrete steps in the cumulative reaction probability as the energy
is raised.1-3 The steps are broadened by quantum mechanical
tunneling. Several reviews are available, covering both theory
and experiment.4-7 The resonances, like all resonances, cor-
respond to poles of the scattering matrix (S matrix).8-13 The
classical analogues of the resonances are periodic orbits for
systems with two degrees of freedom12 and reduced-dimensional
tori or quasiperiodic orbits in systems with more degrees of
freedom.14

Atom-diatom reactions have six vibrational degrees of
freedom, excluding overall translation, and when the saddle
point structure is collinear, these are typically taken as four
vibrations and two rotations. The transition state resonances of
several atom-diatom systems have been analyzed in great detail
with assignments of vibrational quantum numbers, energies, and
resonance widths in the energy domain.1-5,15-18 The widths in
the energy domain may be related to widths of effective
tunneling barriers in coordinate space and to the lifetimes of
the quantum mechanical metastable states.4

The resonance states may be understood most intuitively as
quantized levels of variational transition states, which may in
turn be visualized as global maxima of state-specific effective
potential curves as functions of a reaction coordinate.2 A very
interesting feature in the O+ H2 and Cl+ H2 systems is the
existence of additional resonances corresponding to local
maxima of the effective potential curves that are not global

maxima. These are called supernumerary transition states, and
they have been further classified into supernumeraries of the
first and second kinds.15 The supernumerary phenomena have
been fully analyzed in the O+ H2 system,15 but so far only a
preliminary analysis has been available for Cl+ H2.5,19

For a microcanonical ensemble of systems with energyE,
total angular momentumJ, parity P, and permutational sym-
metry S, the rate constant is given by

whereh is Planck’s constant,φR,JPS(E) is the density of states
per unit energy and volume for reactants, andNJPS(E) is the
cumulative reaction probability (CRP) given by

wheren is a set of quantum numbers (R, V, j, andl) specifying
a reactant (R) state,n′ is a set of quantum numbers (R′, V′, j′,
and l′) specifying a product (P) state,Pnn′

JPS is a state-to-state
reaction probability,R andR′ are arrangement quantum numbers
(with R ) 1 for reactant Cl+ H2 states andR′ ) 2 or 3 for
product HCl + H states),V and V′ are vibrational quantum
numbers,j and j′ are rotational quantum numbers, andl and l′
are orbital angular momentum quantum numbers. Notice that
φR,JPS(E) is purely an equilibrium quantity; hence all the
dynamical information inkJPS(E) is contained in the CRP.

The present paper presents well-converged CRPs for the Cl
+ H2 reaction and its reverse (HCl+ H) for total angular
momentaJPS ) 0++, 1++, 1-+, 2++, and 6++ and
analyzes them in terms of resonances corresponding to varia-
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tional and supernumerary transition states. In addition, we
examine the implications of these transition state resonances
for state-specific reactivity of both the forward and reverse
reactions, questions explored most fully in previous work for
H + H2

3,4 and O+ H2.15 All calculations in this paper employ
the realistic G3 potential energy surface20 (PES) for ClH2, which
has been shown19-22 to lead to good agreement with experiment.
The classical barrier height on this potential energy surface is
0.3417 eV for the forward reaction and 0.2111 eV for the reverse
reaction.

Section II presents the computational methods. Section III
has results, and these are analyzed and discussed in section IV.
Section V presents concluding remarks.

II. Computational Methods

II.A. Scattering Calculations. We used the outgoing wave
variational principle23-27 (OWVP) to calculate the quantum
mechanical CRP of the reaction of Cl and H2. Details of these
calculations as well as a description of the methods and
algorithms used have been presented previously.21 As before,
we used masses of 67384.72 au and 1837.153 au for37Cl and
1H, respectively. We started with the data given in the
supplementary information of ref 21. We also performed
calculations of the CRP for values of the total angular
momentumJPS) 1++, 1-+, 2++, and 6++ at energies from
0.33 to 0.99 eV, all with an energy spacing of 0.02 eV, and at
energies from 1.0 to 1.1 eV at an energy spacing of 0.01 eV.
For the new calculations, we used the same scattering basis set
parameters and screening parameters as shown in set A of Table
2 of ref 21. By merging these new calculations with the data
presented in ref 21, we have CRP data in the energy range from
0.32 to 1.1 eV at a energy spacing of 0.01 eV for the five
combinations of quantum numbers:JPS) 0++, 1++, 1-+,
2++, and 6++.

II.B. Extraction of Transition-State Resonance Param-
eters.For eachJPSconsidered, we fitNJPS(E) as a function of
energyE to a cubic spline28 function. The energy derivative
dNJPS(E)/dE of the spline fit to the CRP gives us the density of
reactive states,2 called FJPS(E) or the DORS. We obtain the
DORS curve by taking the first derivative of the spline fit to
the CRP. The density of reactive states has structure that can
be attributed to the presence of quantized transition states of
the reaction.2

The features in the DORS plot that correspond to energy
levels of the quantized transition state can be assigned to a set
[V1V2

K] of transition state quantum numbers, whereV1 and V2

are stretch and bend quantum numbers for motions transverse
to the reaction coordinate andK is the vibrational angular
momentum.29 The vibrational angular momentum arises due to
the superposition of the two degenerate bending vibrations of
the triatomic system. Thus, if a harmonic bending vibration is
excited byV2 quanta, the degree of degeneracy isV2 + 1.29 The
state with zero-point vibration is nondegenerate. The values that
the vibrational angular momentum quantum numberK can take
areK ) V2, V2 - 2, V2 - 4, ..., 0 or 1, with the restriction that
K e J, since any one component of the angular momentum
can never exceed the total angular momentum. In addition, since
the bending mode is doubly degenerate, each state withK > 0
is doubly degenerate with one odd and one even parity
component. Since we can perform parity-specific calculations,
we can resolve the two parity components. For example, as we
show later in section III, whenJ ) 2, V1 ) 0, andV2 ) 2, we
obtain the doubly degenerate state [022], with one component
showing up in the even parity spectrum and the other in the

odd parity spectrum. We also obtain the [020] state giving a
total degeneracy of 3 for theV2 ) 2 excitation. The transition
states differing in only theK values are in fact nondegenerate
due to anharmonicity;29 they are, however, too close in energy
to be resolved in our calculations.5 Thus, the [020] and [022]
states overlap each other and are seen as just one feature. To
stress this point, we designate the state as [020,2]. (Note that
theK states are harder to resolve than theJ states becauseK is
not a conserved quantum number, and the differentK states
always appear as heavily overlapped features. In contrast, we
can look at differentJ states in different spectra.)

The assignments can be made using a variety of consider-
ations. We will use (i) information from semiclassically obtained
vibrationally adiabatic (VA) curves30-33 for the Cl + H2

reaction, (ii) a fit of the DORS curve to a sum of line shape
functions corresponding to tunneling through effective parabolic
barriers, and (iii) state-to-state reaction probabilities and their
corresponding state-to-state DORSs.15

The VA curves are defined by the equation34

where s is the distance along the reaction path, through
isoinertial coordinates35 with a reduced mass ofµ of 3484.32
amu.s ) 0 corresponds to the saddle point,VMEP is the Born-
Oppenheimer potential energy along the minimum energy
reaction path (MEP), andεint is the vibrational energy of the
modes excluding motion along the reaction coordinate. The VA
curves are obtained by using the program ABCRATE36 wherein
the MEP is calculated using the steepest descent method35 on
both sides of the saddle point, the quantized energies of the
stretching modes are approximated by the WKB method,37,38

and the quantized energies of the bends are obtained from a
centrifugal oscillator treatment39,40using a quadratic-quartic fit
to the two-dimensional potential for bending motions.

We can obtain an approximation to the DORS by using
variational transition state theory34 (VTST) corrected for the
possibility of tunneling and for the fact that even the variational
transition state may be an imperfect bottleneck. Using a
parabolic effective energy barrier allows us to write an expres-
sion for the density of states as a sum of line shape functions
for each transition stateγ given by2

whereWγ is the width parameter of the resonance centered at
Eγ, andκγ is a parameter that we may call the level-dependent
transmission coefficient. Ideally,κγ should be unity (if the
variational transition states were perfect dynamical bottlenecks).

State-specific spectra are also useful in assigning the quantum
numbers to the transition states. The state-specific reaction
probabilities are obtained by selectively summing the reaction
probabilities over certain vibrational or rotational states. We
note that the reactant state labelsn denote a set of quantum
numbers consisting of the initial arrangement quantum number
R, the diatomic vibrational quantum numberV, the diatomic
rotational quantum numberj, and the orbital angular momentum
quantum numberl. Similarly n′ denotesR′, V′, j′, andl′. Thus,
to obtain vibrationally specific reaction probabilities,N νν′

JPS, we
sum over the reaction probabilitiesPJPS

RVjlR′V ′j′l′ for all j, j′, l,
and l′ values and forR′ ) 2 and 3 withR ) 1:

Va(ν1, ν2, K, s) ) VMEP(s) + εint(ν1, ν2, K, s) (3)

FJPS(E) ) ∑
γ

κγFγ
JPS(E) ) ∑

γ

κγexp[(Eγ - E)/Wγ]

Wγ{1 + exp[(Eγ - E)/Wγ]}
2

(4)
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The vibrationally specific DORS is obtained by an analytic
derivative of a cubic spline fit to the vibrationally specific
reaction probability,Fνfν′

JPS (E).

In a similar fashion we can sum either over all initial states
or over all final states for a specific final or initial state to obtain
reaction probabilities (Nn′

JPS or Nn
JPS) and the corresponding

DORS (Ffn′
JPS or Fnf

JPS) that are final- or initial-state-specific,
respectively.

III. Results

We present the results for the variousJPSvalues below. The
parity, P, is defined asP ) (-1)j+l which always gives a+1
parity for J ) 0 (j ) l), and two parities [+1 (even) and-1
(odd)] forJ > 0. The spatial permutation symmetry termSmay
be defined for atom-diatom reactions such as X+ H2 f XH
+ H and is related to the nuclear spin function.S ) +1 for
para hydrogen and-1 for ortho hydrogen. All the results
presented below haveS ) +1.

JPS ) 0++. Figure 1 shows the accurate quantal CRP,
NJPS(E), as squares, forJPS) 0++. A spline fit to the CRP
data (which is shown as the solid line in Figure 1) is then
analytically differentiated to obtain the first derivative of the
CRP with respect to energy, i.e., the DORS curve. This is shown
as the dashed line in Figure 1. We see seven features, namely,
six peaks and a shoulder. We will use the method outlined above
where we fit the DORS curve to a sum of line shape functions
defined by eq 4. We treatWγ, Eγ, andκγ as adjustable param-
eters in our fit. We can reproduce the curve quite accurately by
using a sum of nine terms. The line shape curves, their sum,
and the DORS curve are shown in Figure 2. The nine individual
bell-shaped curves are shown as dotted lines and their sum as
squares. The sum is seen to be an excellent fit to the solid line,
which is the DORS plot, obtained from the quantum calcula-
tions. Each of the line shape functions corresponds to a transition
state and may be assigned a label consisting of the quantum
numbers [V1V2

K]. The value of the energy (at the maximum,
unless specifically stated to be at a different place) of each
feature or theEmax value, the assignments, the semiclasssical
energies from the VA curves, and the fit parameters for each
of the line shape functions are shown in Table 1. The root-
mean-square (RMS) error of the fit over the energy range 0.32-
1.1 eV is 0.14 eV-1. The assignments are explained in detail
below. The semiclassical energy of the VA curve corresponds
to the energy of the dynamical bottleneck, which, for nonstretch
excited states, is the highest point on the curve on either the
product side or the reactant side of the reaction coordinate. For
stretch-excited states, we choose the maximum of the curve that
is not in the region of high reaction-path curvature. The
semiclassical energy of the supernumerary state is the energy
at the maximum of the VA curve in the product side of the
reaction coordinate, again away from the region of high reaction-
path curvature. We note that transition state theory assumes that
all theκγ for each transition state are unity. Several of the values
of the transmission coefficients, however, differ from this ideal.
This could be a result of the approximations made regarding
parabolic effective energy barriers or the fact that the state is
not an ideal dynamical bottleneck.

The VA curves forJ ) 0 are shown in Figure 3a-c. They
are also labeled by [V1V2

K]. Since the bends are treated by a
quadratic-quartic fit to the bending potential, the semiclassical
energy thresholds obtained for highV2 states are not expected
to be quantitatively accurate. The energies of the lowV1 andV2

states should, however, correlate well with the quantized
thresholds for the same states.

Feature 1 is easily assigned to the [000] state, as it is the
overall reaction threshold. Feature 2 is assigned to the [020]
state since only even bend states are allowed forJ ) 0. (This
is becauseK e J andK ) V2, V2 - 2, ..., 0 or 1). Furthermore,

Figure 1. Accurate quantal cumulative reaction probability forJPS
) 0++ (squares), spline fit to the CRP (solid line), and density of
reactive states (dashed line) as functions of the energy forJPS) 0++.

Figure 2. Line shape functions (dashed lines), their sum (solid line),
and the density of reactive states (squares) as a function of the energy
for JPS) 0++.

TABLE 1: Emax Values for the Features in the DORS
Curves, the Transition State Assignments, the Semiclassical
Energies from the VA Curves, and the Fit Parameters for
JPS ) 0++

feature
Emax (eV)
(DORS) [ν1ν2

K]
semiclassical
energy (eV) Wγ Eγ (eV) κγ

1 0.481 [000] 0.511 0.015 0.482 1.01
2 0.664 [020] 0.757 0.023 0.663 0.75
3 0.756 [s100] 0.729 0.008 0.755 0.11
4 0.851 [040] 1.071 0.035 0.847 0.91
5 0.851 [100] 0.846 0.008 0.851 0.66
6 0.991 [120] 1.028 0.013 0.982 0.43
7 1.000 [060] 1.426 0.008 1.001 0.15
8 1.048 [s200] 1.037 0.007 1.048 0.74
9 1.100a nab 0.020 1.098 0.42

a The CRP data end at 1.1 eV.b This feature was not assigned (see
text).

Nνν′
JPS(E) ) ∑

R′)2,3

∑
jlj ′l′

PRνjlR′ν′j′l′
JPS (5)

Fνfν′
JPS (E) ) d

dE
Nνν′

JPS(E) (6)
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the energy of the second feature is well below the semiclassical
energy threshold for states withV1 ) 1. Feature 3 appears at
too low an energy to be the variational transition state [100]. It
is, however, located very close to the semiclassical energy
threshold of the product-like [100] vibrationally adiabatic state
(0.76 eV for feature 3 versus 0.73 eV for the semiclassical
threshold from the VA curve). We therefore assign feature 3 to
the supernumerary state [s100]. Supernumerary transition states
have been identified earlier for other reactions.5,15 They may
be considered as dynamical bottlenecks in the product channel.
Supernumerary transition states have been classified into those
of the first kind (which influence total reactivity) and those of

the second kind (which influence only state-to-state reactivity).
As feature 3 clearly influences the total reactivity we classify it
as a supernumerary state of the first kind. Supernumeraries of
the second kind can be identified by looking at state-specific
spectra.

Figures 4a,b and 5a,b show the state-specific spectra for
various initial and final conditions. Parts a and b of Figure 4
show the state-to-state DORS curves for various initialV and
final V′ values summed over thej and j′ values. Parts a and b
of Figure 5 show the state-to-state DORS curves for various
individual initial (V, j) and final (V′, j′) channels. To use the
state-specific spectra to assign the stretch and bend quantum
numbers, we first note that, to the extent that a transition may
be considered vibrationally adiabatic, the stretch quantum
numbers,V1, have a propensity to correlate to the diatomic
vibrational quantum numberV.3,41 This is called3 half-collision
stretch adiabaticity. A vibrationally nonadiabatic traversal of
the path to the transition state leads toV * V1.

Figure 4a shows the state-to-state DORS curve forF0f0′
0++.

The first two maxima of the curve correspond to features 1 and
2. This confirms our assignment of the features as [000] and
[020], respectively. SinceV ) V1, these two transition states are
vibrationally adiabatic transition states. The state-specific DORS
plot for all channels with initialV ) 0 summed over allj and
for all final channels withV′ ) 1 summed over allj′ is also
shown in Figure 4a. The first peak at ca. 0.73 eV indicates the
onset of flux into the productV′ ) 1 channel. This confirms
our assignment of feature 3 as the supernumerary state [s100].

As noted earlier, comparisons with the semiclassical energy
thresholds from the VA curves become less useful in cases
where the bend is highly excited (i.e.,V2 g 2). We must,
therefore, use other methods to assign quantum numbers to the
high V2 states. One of these is the energetic separation of the
states differing in only the bend quantum numbers in a given
V1 manifold. We can expect the energy separations of the [0V2

0]
states to be an approximately linear function ofV2, at least for
small V2.2 On this basis, since the energy separation between
the maximum of feature 1 ([000]) and feature 2 ([020]) is 0.18
eV, and since the feature that is separated by about 0.18 eV
from the maximum of feature 2 is feature 4, we may assign
feature 4 to the [04]0 state. Feature 4 is also broader than features
1 or 2 and this is in keeping with the tendency for the peaks
within a givenV1 manifold to both broaden and shorten asV2

increases.5 This tendency can be understood by looking at the
VA curves for a givenV1. Figure 3b shows the VA curves for
[V1 ) 1, V2 ) 0, 1, 2K)0or1]. We see that asV2 increases the
peaks corresponding to the dynamical bottlenecks become
narrower, thus facilitating greater tunneling. In relation to the
CRP curve this means that the sharp “steps” in the reaction
probability become smoothed out, which translates to broadening
of the peaks in the DORS curve.

The state-specific DORS curve for initialV ) 0 andj ) 0, 2,
4, 6, and 8 channels summed over all final channels is shown
in Figure 5a. Flux from the (0,0) and (0,2) channels peaks
strongly at the energy of feature 1 (the [000] threshold) and
less strongly at that of feature 2 (the [020] threshold). The (0,4)
channel, however, couples strongly to the [020] threshold but
hardly couples at all to the [000] threshold. The reason for this
is understood if we compare the threshold energy for the [000]
state, which is 0.482 eV, to the asymptotic energies of the (0,0),
(0,2), and (0,4) channels which are 0.268, 0.312, and 0.414 eV,
respectively. The difference between the threshold energy and
the asymptotic energy is 0.214, 0.170, and 0.068 eV for the
(0,0), (0,2), and (0,4) channels, respectively. The (0,4) channel

Figure 3. Vibrationally adiabatic curves in increasing order from the
second-lowest curve for (a) [000], [011], [020], [031], [040], [051], [060],
(b) [100], [111], [120], [131], [140], [160], and (c) [200], [211], [220].
The lowest curve in each panel shows theVMEP as a function of the
distance from the saddle point.
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is, therefore, energetically accessible, and as in the H+ H2

reaction,3 we conclude that the reason that the channel does
not couple to the [000] threshold is not because the dynamics
of the reaction prevent it from doing so, but because of the
nature of the PES. The fact that the (0,4) channel does not couple
to the [000] state is also a specific example of a more general

correlation between the rotational quantum number of the
diatomic and the bend quantum number of the transition state.
We discuss this in more detail in section IV. The (0,6) channel
couples to the [040] threshold. Thus we see that all these
transition states display good stretch adiabaticity. Figure 5a also
shows the state-selected DORS curve for initialV ) 1 andj )

Figure 4. State-specific spectra for (a) initialV ) 0 and finalV′ ) 0, 1, and 2 summed over all initial and finalj and (b) initialV ) 1 and final
V′ ) 0, 1, and 2 summed over all initial and finalj. All panels are forJPS) 0++.

Figure 5. (a) State-specific spectra for initialV ) 0, j ) 0, 2, ..., 8 andV ) 1, j ) 0, 2, ..., 6. The topmost panel shows the total density of reactive
states for comparison. (b) State-specific spectra for finalV′ ) 0, j′ ) 0, 1, ..., 24,V′ ) 1, j′ ) 0, 1, ..., 18, andV′ ) 2, j′ ) 0, 1, ..., 8. All panels
are forJPS) 0++.
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0, 2, 4, and 6 channels summed over all final channels. The
trends are similar to those described above. The (1,0) DORS
curve shows a very strong maximum at the energy of feature 5.
We also find that the semiclassical energy of the [100] state is
within 5 meV of the maximum of feature 5. On the basis of the
above evidence, we assign feature 5 to the [100] state. The VA
curves indicate that those states for which the stretch is not
excited (V1 ) 0) allow far greater tunneling than those for which
stretch excitation is present. This is borne out by feature 5, which
is tall and thin compared to the non-stretch-excited states.

We assign feature 6 to the state [120], mainly by looking at
the state-specific DORS curves. Comparison to the semiclassical
energy is inconclusive, as the state is bend-excited. Figure 4b
shows the state-specific DORS curve for initialV ) 1 and final
V′ ) 1 summed over all initial and finalj. The curve has its
first maximum at the threshold of [100] and a second maximum
close to the energy of feature 6. Figure 5b shows that both the
initial (1,2) channel and the (1,4) channel have considerable
flux close to the peak of feature 6. Thus, like the [100] state,
the [120] state is also vibrationally adiabatic.

Feature 7 is assigned to be the [060] state since the initial
(0,8) channel displays considerable flux at the maximum of
feature 7. Figure 5a shows that the difference between the energy
at the maximum of the (0,6) DORS curve and the (0,8) DORS
curve is about 0.15 eV. The difference in the energy at the
maximum of feature 7 and the energy at the maximum of feature
4 is also 0.15 eV, and this is only slightly smaller than the
spacing between the [000] and the [020] states and the [020]
and the [040] states.

Features 8 and 9 overlap substantially. Only part of feature
9 is seen, since the quantum results are not available beyond
1.1 eV. It is not possible to assign feature 9 unambiguously.
Due to the substantial overlap with feature 9, the assignment
of feature 8 is only provisional. Feature 8 is very close to the
semiclassical threshold energy for the product side [200] state,
differing from it by only 0.01 eV. The state-specific DORS
curve for the finalV′ ) 2 summed over allj′ is shown in Figure
5b. The curve shows a maximum at the energy of the maximum
of feature 8. The initialV ) 2 threshold is not energetically ac-
cessible, which implies that the feature is too low in energy to
be the [200] state. Thus, we assign the feature to be, at least in
part, due to the [s200] state. A more definitive assignment can-
not be made until the CRP data for higher energies is available.

JPS) 1++. The spectrum forJPS) 1++ will contain those
features that haveK ) 1 and for whichV2 is an odd number.
The accurate quantal CRP data (squares) as well as the spline
fit to the data (solid line) are shown in Figure 6. The DORS
curve, obtained by an analytic first derivative of the spline fit
is shown as the dashed line in Figure 6. We fit the DORS curve
using a sum of line shape functions as we did for theJPS)
0++ data. The curve is well approximated to plotting accuracy
by using a sum of six line shape functions. The line shape
functions, their sum, and the DORS curve are shown in Figure
7. We make assignments to the features in the DORS curve in
terms of [V1V2

K] as before, using methods similar to the ones
described above for theJPS) 0++ spectrum. Table 2 shows
theEmax value of each feature, the assignments, the semiclassi-
cal energies from the VA curves, and the fit parameters for each
of the transition states. The RMS error of the fit over the energy
range 0.32-1.1 eV is 0.13 eV-1. As the total angular momentum
J changes, the semiclassical energy of the dynamical bottleneck
also changes by approximatelyBJ(J + 1) whereB is the rota-
tional constant of the system at the geometry of the dynamical
bottleneck. For the ClH2 system the rotational constant at the

dynamical bottlenecks, up to at least 1 Å away from the saddle
point, along the reaction path is of the order of 2× 10-4 eV.
Thus, forJ ) 1, the change in the semiclassical energies from
the J ) 0 values, at the dynamical bottlenecks, is of the order
of 4 × 10-4 eV. For the purposes of comparing the semiclassical
energy of a transition state to the estimate of the energy from
the DORS curve forJ ) 1, we therefore use the semiclassical
energies of theJ ) 0 curves and the semiclassical energies listed
in Table 2 are the ones forJ ) 0.

Since theJPS) 1++ DORS plot contains features only with
odd V2 values, the first feature is easily assigned to be [011].
The validity of this assignment is borne out by comparing the
energy of the maximum of the first feature, i.e., theEmax value

Figure 6. Accurate quantal CRP (squares), spline fit to the CRP (solid
line), and density of reactive states (dashed line) as functions of the
energy forJPS) 1++.

Figure 7. Line shape functions (dashed lines), their sum (solid line),
and the density of reactive states (squares) as a function of the energy
for JPS) 1++.

TABLE 2: Emax Values for the Features in the DORS
Curves, the Transition State Assignments, the Semiclassical
Energies from the VA Curves, and the Fit Parameters for
JPS ) 1++

feature
Emax (eV)
(DORS) [ν1ν2

K]
semiclassical
energya (eV) Wγ Eγ (eV) κγ

1 0.580 [011] 0.617 0.021 0.581 0.99
2 0.769 [031] 0.905 0.029 0.768 0.97
3 0.923 [111] 0.922 0.013 0.921 0.61
4 0.923 [051] 1.241 0.024 0.926 0.75
5 1.012b [071] 0.892 0.039 1.019 0.64
6 1.090 [131] 1.144 0.016 1.093 1.02

a This is the semiclassical energy forJ ) 0. b This is the energy at
the minimum of the DORS curve just before feature 6.
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of the first feature, to the semiclassical energy. The values differ
only by 0.04 eV. Parts a and b of Figure 8 show the state-
specific DORS curves for various values of initial and finalV
quantum numbers summed over all initial and finalj. Parts a
and b of Figure 9 show the individual state-specific DORS
curves for various values of initial and finalV and j quantum
numbers.

The state-specific DORS curve with initialV ) 0 andV′ )
0, summed over allj andj′ shows a maximum at the energy of
the maximum of feature 1. Similar to the assignment of feature
1, we assign the second peak to [031] also on the basis of the
state-specific spectra. The semiclassical energy comparison is
unreliable at such high levels of bend excitation. As in theJPS
) 0++ spectrum, both the features are due to stretch adiabatic
transitions.

The third feature is a tall peak that has a small width,
indicative, as in theJ ) 0 spectrum, of the onset of the stretch
excitations. We have assigned the third feature to the [111] level,
based on evidence from the state-specific DORS curves as well
as by comparisons to the semiclassical energy from the VA
curve. The state-specific DORS curves forV ) 1 andV′ ) 0

and 1 summed over allj and j′ shows the onset of flux in the
V ) 1 channel at the energy of the maximum of the third feature.

The fourth peak is assigned to be [051], again, on the basis
of evidence from the state-specific DORS curves. The difference
in theEγ values between the [011] and the [031] states is about
0.18 eV, and that between the [031] state and the fourth feature,
about 0.16 eV. As forJ ) 0, we expect that the differences
between the energies of the states for successiveV2 values at a
given value ofV1 will be approximately constant.

The fifth feature may be assigned, in part, to the [071] state.
The state-specific curves for initialV ) 0 and variousj summed
over all final quantum numbers is shown in Figure 9a. The
sequence of peaks indicates the progression ofV2 values within
theV1 ) 0 manifold. The feature is, however, anomalously close
to the [051] state in energy. The reason for this is unclear. It is
possible that the fit distorts the true position of the state due to
the strong overlap of feature 5 with its neighboring features
(one of them an ill-defined feature 6).

The sixth feature is incomplete since we did not perform the
quantum calculations beyond 1.1 eV. A provisional assignment,
based on the state-specific spectra is the state [131]. The DORS
curve for initial V ) 1 and finalV′ ) 2, summed overj and j′,
shows a peak at the energy of this feature. The finding of
considerable flux in the initialV ) 1 channel, the fact that the
feature is tall with a small width, and the location of the position
of the maximum of the feature in relation to theEmax of the
[111] peak all indicate a stretch-excited feature. For future study
it would be interesting to calculate CRP data at higher energies
to help confirm the assignment.

JPS) 1-+. The accurate quantal CRP forJPS) 1-+, the
spline fit to the data, and the DORS curve are shown in Figure
10. The DORS curve is fit as before, with the fit requiring a
sum of 13 line shape functions. Figure 11 shows the line shape
functions, their sum, and the DORS curve. The DORS curve
for JPS) 1-+ contains features with both even and odd values
of V2 andK values of both 0 and 1. Consequently, the features
of theJPS) 1++ spectrum should be duplicated in theJPS)
1-+ spectrum and the features corresponding to theJPS)
1++ spectrum may be assigned using the previous,JPS) 1++,
assignments. The remaining features correspond to evenV2

values. The even bend states will occur in positions close to
where they occurred in theJPS) 0++ spectrum. All theEmax

values, the assignments, the semiclassical energies from the (J
) 0) VA curves, and the fit parameters for each of the transition
states are shown in Table 3. The RMS error of the fit in the
range 0.32-1.1 eV is 0.14 eV-1.

Figure 8. State-specific spectra for (a) initialV ) 0 and finalV′ ) 0,
1, and 2 summed over all initial and finalj and (b) initialV ) 1 and
final V′ ) 0, 1, and 2 summed over all initial and finalj. All panels are
for JPS) 1++.

Figure 9. (a) State-specific spectra for initialV ) 0, j ) 2, 4, ..., 10
andV ) 1, j ) 2, 4, 6. The topmost panel shows the total density of
reactive states for comparison. (b) State-specific spectra for finalV′ )
0, j′ ) 1, 2, ..., 24,V′ ) 1, j′ ) 1, 2, ..., 18, andV′ ) 2, j′ ) 1, 2, ...,
8. All panels are forJPS) 1++.

Figure 10. Accurate quantal CRP (squares), spline fit to the CRP (solid
line), and density of reactive states (dashed line) as functions of the
energy forJPS) 1-+.
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Features 1, 2, and 3 are easily assigned to the states [000],
[011], and [020], respectively. Feature 1 is the overall reaction
threshold and the assignments for features 2 and 3 follow from
the assignments in the spectra ofJPS) 0++ andJPS) 1++.
The semiclassical energies comparisons are valid for small bend
excitations such asV2 ) 1 and comparing the semiclassical
energy for the [011] state to theEmax for feature 2 shows that
they differ by only about 0.03 eV.

Feature 4 is assigned to be the supernumerary [s100] state
on the basis of the comparison with the semiclassical energy.
The feature occurs close to the same energy in the spectrum as
it does in theJ ) 0 spectrum. The state-specific spectra for
various values of initial (V, j) and final (V′, j′) are shown in
Figures 12a,b and 13a,b. The spectra for the states with initial
V ) 0 and finalV′ ) 1 show the threshold for flux into the final
V′ ) 1 state at the energy of feature 4.

Feature 5 is assigned to the [031] state on the basis of the
JPS ) 1++ assignment as well as the state-specific DORS
curve of theV ) 0, V′ ) 0 states. The DORS curve shows a
maximum at the energy of feature 5, which indicates flux out
of theV ) 0 and into theV′ ) 0 state. Thus, this is also a stretch
adiabatic feature.

The V ) 1, V′ ) 1 DORS curve in Figure 12b shows the
threshold for flux into the productV′ ) 1 channels at the energy
of the sixth feature. We therefore assign the sixth feature as the

stretch adiabatic state [100]. Analogous to the corresponding
feature in theJPS) 0++ spectrum we assign feature 7 as the
[040] state. Both state-specific DORS curves as well as the
progression of theEγ values for successive bend excitations in
the V1 ) 0 manifold confirm the assignment. Following the
assignments in the spectra ofJPS) 1++ we assign features 8
and 9 to the states [111] and [051], respectively.

Features 10 and 11 correspond to the states [120] and [060],
respectively. The assignment is confirmed by the state-specific
DORS curves as well as the assignments of theJPS) 0++
spectrum. Feature 12 is the supernumerary [s200] state, indicated
by both a comparison with the semiclassical energy as well as
by the state-specific DORS curve, which shows flux into the
final V′ ) 2 state. The feature also probably includes the [071]
state, which is seen in theJPS) 1++ spectrum. The higher
density of states of the 1-+ spectrum and the resulting overlap
of features leads to the obscuring of some features that are
present in the “cleaner”, 1++, spectrum.

The 13th, final, feature is ill defined and incomplete due to
the lack of CRP data at higher energies. We provisionally assign
this feature to the [131] state on the basis of the assignment
made in theJPS) 1++ spectrum as well by looking at the

Figure 11. Line shape functions (dashed lines), their sum (solid line),
and the density of reactive states (squares) as a function of the energy
for JPS) 1-+.

TABLE 3: Emax Values for the Features in the DORS
Curves, the Transition State Assignments, the Semiclassical
Energies from the VA Curves, and the Fit Parameters for
JPS ) 1-+

feature
Emax (eV)
(DORS) [ν1ν2

K]
semiclassical
energya (eV) Wγ Eγ (eV) κγ

1 0.482 [000] 0.511 0.015 0.482 0.98
2 0.583 [011] 0.617 0.021 0.578 0.89
3 0.660 [020] 0.757 0.029 0.666 1.06
4 0.760 [s100] 0.729 0.010 0.756 0.22
5 0.806b [031] 0.905 0.026 0.787 0.94
6 0.851 [100] 0.846 0.008 0.851 0.73
7 0.851 [040] 1.071 0.028 0.868 0.62
8 0.922 [111] 0.922 0.013 0.920 0.54
9 0.922 [051] 1.241 0.021 0.931 0.89

10 0.989 [120] 1.028 0.013 0.984 0.59
11 0.989 [060]c 1.426 0.008 1.006 0.20
12 1.049 [s200]c 1.037 0.007 1.048 0.75
13 1.091 [131] 1.144 0.021 1.094 1.88

a This is the semiclassical energy forJ ) 0. b This is at the minimum
of the DORS curve just before feature 6.c The feature may include
the [071] state unresolved due to overlap (see text).

Figure 12. State-specific spectra for (a) initialV ) 0 and finalV′ ) 0,
1, and 2 summed over all initial and finalj and (b) initialV ) 1 and
final V′ ) 0, 1, and 2 summed over all initial and finalj. All panels are
for JPS) 1-+.

Figure 13. (a) State-specific spectra for initialV ) 0, j ) 0, 2, ..., 8
andV ) 1, j ) 0, 2, ..., 6. The topmost panel shows the total density
of reactive states for comparison. (b) State-specific spectra for finalV′
) 0, j′ ) 0, 1, ..., 24,V′ ) 1, j′ ) 0, 1, ..., 18, andV′ ) 2, j′ ) 0, 1,
..., 8. All panels are forJPS) 1-+.
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state-specific DORS curves for channels with initialV ) 1,
which show flux around theEmax of feature 13.

JPS) 2++. The CRP data forJPS) 2++ is shown, along
with a spline fit to the data, in Figure 14. The spline fit is
analytically differentiated to give the DORS curve also shown
in Figure 14, as the dashed line. We fit the DORS curve, as
before, using a sum of line shape functions. We can reproduce
the curve quite well using 13 line shape functions. The line

shape functions are shown in Figure 15. We assigned quantum
numbers [V1V2

K] to the features of the DORS curve using the
assignments we made for theJPS ) 0++, 1++, and 1-+
spectra as our guide. TheEmax value of each feature, the
assignments, and the fit parameters for the 13 transition states
are presented in Table 4. The RMS error of the fit over the
range 0.32-1.1 eV is 0.12 eV-1.

We note that several of theκγ values are greater than 1. As
discussed in section II, this is because forJ ) 2, K ) 0 and 2
for the even bend states and 1 for the odd bend states. Further,
states for whichK > 0 are doubly degenerate. Thus, the third
feature contains both the [020] and one of the [022] states and
is designated as [020,2]. The JPS) 2-+ spectrum (which is
not shown) contains the other [022] state. Table 4 lists the
degeneracies of each level as well as the running sum of the
degeneracies. We note that the running sum of the degeneracies
up to a particular state approximately corresponds to the value
of the CRP at theEγ of that state, almost up to 1 eV. The
differentK values are not resolved since the separation for states
differing only in K values is small compared to the separation
between states differing in bend and stretch quantum numbers.5

Thus, we find that theκγ values for bend states withV2 g 2 are
greater than 1, indicating the presence of other, unresolved states
differing only in the value ofK. This is seen in features 3, 5, 7,
10, and 11.

JPS) 6++. Figure 16 shows the CRP data forJPS) 6++,
the spline fit to the data, and the DORS curve obtained by
differentiating the spline fit analytically. We fit the DORS curve

Figure 14. Accurate quantal CRP (squares), spline fit to the CRP (solid
line), and density of reactive states (dashed line) as functions of the
energy forJPS) 2++.

Figure 15. Line shape functions (dashed lines), their sum (solid line),
and the density of reactive states (squares) as a function of the energy
for JPS) 2++.

TABLE 4: Emax Values for the Features in the DORS Curves, the Transition State Assignments, the Fit Parameters, the
Degeneracy of Each Transition State, and the Running Sum of Degeneracies forJPS ) 2++

feature
Emax (eV)
(DORS) [ν1ν2

K] Wγ Eγ (eV) κγ degeneracya
running

sum

1 0.483 [000] 0.015 0.483 0.98 1 1
2 0.586 [011] 0.021 0.579 0.87 1 2
3 0.682 [020,2] 0.029 0.680 2.01 1,1 4
4 0.758 [s100] 0.010 0.757 0.24 4
5 0.798b [031] 0.029 0.796 1.26 1 5
6 0.853 [100] 0.009 0.852 0.77 1 6
7 0.853 [040,2] 0.023 0.868 0.96 1,1 8
8 0.922 [111] 0.020 0.916 0.69 1 9
9 0.922 [051] 0.014 0.925 0.77 1 10

10 0.957c [120,2] 0.019 0.984 1.13 1,1 12
11 1.003 [060,2] 0.014 1.007 1.07 1,1 14
12 1.049 [s200] 0.007 1.049 0.84 14
13 1.086 [131] 0.024 1.095 2.73 1 15

a Multiple degeneracies are listed for states with the sameν1 andν2 but differentK values.b At the minimum of the DORS curve just before
feature 6.c At the minimum of the DORS curve just before feature 11.

Figure 16. Accurate quantal CRP (squares), spline fit to the CRP (solid
line), and density of reactive states (dashed line) as a function of the
energy forJPS) 6++.
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to a sum of line shape functions as before. We find that we get
a good fit by using 14 terms in the sum. The line shape functions
and their sum are shown in Figure 17. TheEmax value of each
feature, the assignments, and the fit parameters of the 14
transition states are listed in Table 5. The RMS error of the fit
over the range 0.32-1.1 eV is 0.11 eV-1. Using the assignments
for theJPS) 0++, 1++, 1-+, and 2++ spectra we are able
to assign 13 of the 14 features in the DORS curve. We believe
that feature 10, which does not appear in any of the other DORS
curves, may be the supernumerary state [s120]. It is difficult to
conclusively assign feature 10, as the density of states in that
region is very high and the overlap is significant. The position
and the fit parametersκγ andWγ of the feature, however, indicate
that it may be due to a supernumerary transition state. Analysis
of the state-specific DORS curves (which are not shown) for
the product (1,j′) and reactant (1,j) channels indicate that there
is flux in both channels. Considerably more flux, however, is
seen going into the product (1,j′) channels than is coming out
of the reactant (1,j) channel. The semiclassical energy from
the VA curve forJ ) 0 corrected forJ ) 6 by adding theBJ(J
+ 1) term indicates that the product side [120] dynamical
bottleneck has an energy of about 0.84 eV. This is, however,
much lower than theEmax of feature 10, which is 0.976 eV.

As in the JPS ) 2++ spectrum, several of the features
possessκγ values greater than 1. As explained earlier, this is
due to the nonzeroJ value, which causes the presence of states
with the sameV1 and V2 values, but differentK values. The

degeneracy of each state and the running sum of the degenera-
cies are also listed in Table 5. Again, we note that the running
sum for a state at a given energy is approximately equal to the
CRP at that energy up to about 1 eV.

IV. Discussion and Analysis

With the above assignments of stretch and bend quantum
numbers to the features in the DORS curve obtained from the
quantal CRP for different values of the total angular momentum
J, we may conclude that the Cl+ H2 reaction is controlled by
quantized transition states, at least up to 1.1 eV and forJ ) 0,
1, 2, and 6.

Partial Transmission Coefficients and State-Specific Pro-
cesses.To quantify the coupling between the initial or final states
and the transition states, we consider the “partial transmission
coefficients”κγVj or κγV′j′ associated with a particular channel
(V, j) or (V′, j′), respectively, and a transition stateγ. We obtain
the state-specific transmission coefficients by fitting the state-
specific DORS curves to a sum of line shape functions as we
did for the total DORS. In this case, however, we fix theEγ
and the width parameters to the values obtained from the total
fit and permit only the transmission coefficient parameter to
vary. Figures 18a-d, 19a-d, and 20a-d show the value of the
partial transmission coefficient as a function of theV and j (or
V′ and j′) quantum numbers for reactants and products forJPS
) 0++, 1++, and 1-+. A number of the state-specific spectra
show negative values for the DORS. While we performed the
fit with the negative values included, Figures 18-20 omit the
negative values of the partial transmission coefficients. The
physical significance of the negative values of the transmission
coefficients is unclear, but we may presume that it arises from
interference between the various resonances. Figures 18-20
depict clearly the contributions to the transition states from the
various initial and final states. It is also easy to see the various
stretch adiabatic and nonadiabatic transitions from the figures.

Figure 18a shows the partial transmission coefficients as a
function of the initial channel given by (V, j) quantum numbers.
We see that most of the transitions are strongly stretch adiabatic.
Stretch nonadiabaticity occurs mostly for states that have a high
degree of bend excitation. We also find a correlation between
the reactants’ rotational quantum numberj and the bend quantum
numberV2 of the transition state. We find that for collisions
that are stretch adiabatic the relation|j - V2| e 3 holds quite
well for both J ) 0 and 1. This relation has been has been
observed earlier3,4 in other systems such as H+ H2. We see a

Figure 17. Line shape functions (dashed lines), their sum (solid line),
and the density of reactive states (squares) as a function of the energy
for JPS) 6++.

TABLE 5: Emax Values for the Features in the DORS Curves, the Transition State Assignments, the Fit Parameters, the
Degeneracy of Each Transition State, and the Running Sum of Degeneracies forJPS ) 6++

feature
Emax (eV)
(DORS) [ν1ν2

K] Wγ Eγ (eV) κγ degeneraciesa
running

sum

1 0.494 [000] 0.015 0.493 0.97 1 1
2 0.596 [011] 0.021 0.590 0.87 1 2
3 0.695 [020,2] 0.030 0.691 2.05 1,1 4
4 0.777 [s100] 0.011 0.767 0.28 4
5 0.784b [031,3] 0.028 0.813 1.07 1,1 6
6 0.860 [100] 0.009 0.859 0.79 1 7
7 0.860 [040,2,4] 0.021 0.881 1.16 1,1,1 10
8 0.933 [111] 0.016 0.927 0.50 1 11
9 0.933 [051,3,5] 0.017 0.932 1.27 1,1,1 13

10 0.963c [s120,2] 0.021 0.976 0.66 13
11 1.012 [120,2] 0.027 0.993 1.59 1,1 15
12 1.012 [060,2,4,6] 0.017 1.015 1.78 1,1,1,1 19
13 1.058 [s200] 0.008 1.057 0.82 19
14 1.100d [131,3] 0.024 1.103 5.00 1,1 21

a Multiple degeneracies listed are for states with the sameV1 andV2, but differentK. b At the minimum of the DORS curve just before feature
6. c At the minimum of the DORS curve just before feature 11.d The CRP data are available only up to 1.1 eV.
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similar correlation in the data forJ ) 1 as well as shown in
Figures 19a and 20a. In contrast, there is no such correlation
betweenj′ and V2 or even betweenj and V2 for the stretch
nonadiabatic transitions.

Earlier studies15,42 have shown that the features in the state-
specific spectra narrow as the energy is increased. This was
seen15 as part of a trend for greater product-state specificity as
the energy of the transition state threshold increased.42 Figures

Figure 18. Partial transmission coefficients for (a)V ) 0, j ) 0, 2, ..., 8 andV ) 1, j ) 0, 2, ..., 6, (b)V′ ) 0, j′ ) 0, 1, ..., 24, (c)V′ ) 1, j′ )
0, 1, ..., 18, and (d)V′ ) 2, j′ ) 0, 1, ..., 8. All plots are forJPS) 0++.

Figure 19. Partial transmission coefficients for (a)V ) 0, j ) 2, 4, ..., 10 andV ) 1, j ) 2, 4, 6, (b)V′ ) 0, j′ ) 1, 2, ..., 24, (c)V′ ) 1, j′ ) 1,
2, ..., 18, and (d)V′ ) 2, j′ ) 1, 2, ..., 8. All plots are forJPS) 1++.
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18b, 19a,b, and 20b show clearly how the transmission
coefficient of a given transition state changes across the range
of initial j or final j′ values within a initialV (or final V′)
manifold. We see that transition states that are highly bend
excited (and thus have thresholds at higher energies than the
low bend excited states) tend to gate flux into a narrower range
of product channels than those with low bend quantum numbers.
We see that the ClH2 system shows the same product-state
specificity as seen in earlier studies42 on systems such as H+
H2 and O+ H2.

Supernumerary states of the first kind are also clearly seen
in Figures 18c-d and 20c,d. They have relatively large partial
transmission coefficients in the product channels. The figures
also show that transitions through the supernumerary states are
substantially stretch nonadiabatic. We can also identify super-
numerary states of the second kind using these figures. Parts a
and c of Figure 19 show that the partial transmission coefficient
for the feature corresponding to the [071] state has a component
in the V ) 1 manifold as well a strong component in theV′ )
1 manifold. These components are possibly due to the super-
numerary state [s131]. Since the influence of this state is not
clearly seen in the total DORS but is obvious in the state-specific
spectra, we may call it a supernumerary state of the second
kind.

State-Specific Rate Coefficients.TheJPS-specific thermal
rate coefficient,kJPS, at a temperatureT for a bimolecular
reaction is given by21

whereBelecis the fraction of reactants that collide on the reactive
2A′ surface,Φrel(T) is the relative translational partition function
of Cl with respect to H2, QCl andQHH are the internal partition

functions of Cl and H2 respectively, and IJPSis an integral given
by

wherekB is Boltzmann’s constant andNJPS(E) is the CRP. The
integral can be rewritten in terms of the density of reactive states,
FJPS(E), as

Equation 4 shows that we may write the DORS as a sum of
contributions from the various transition statesγ. Hence, we
can write IJPS as a sum over contributions from the transition
statesγ

Consequently, we can also writekJPSas a sum over contributions
from the various transition statesγ

where kγ
JPS(T) is the JPS and transition state-specific rate

constant.
By a similar procedure, if we utilize the initial state-specific

DORS,Fnf
JPS, in eq 9 we can calculate the initial-state-specific

rate constant,knf
JPS(T), as a sum over contributions from the

various transition states.

Figure 20. Partial transmission coefficients for (a)V ) 0, j ) 0, 2, ..., 8 andV ) 1, j ) 0, 2, ..., 6, (b)V′ ) 0, j′ ) 0, 1, ..., 24, (c)V′ ) 1, j′ )
0, 1, ..., 18, and (d)V′ ) 2, j′ ) 0, 1, ..., 8. All plots are forJPS) 1-+.

kJPS(T) )
Belec(T) I JPS(T)

hΦrel(T) QCl(T) QHH(T)
(7)

I JPS(T) ) ∫0

∞
dE exp[-E/kBT]NJPS(E) (8)

I JPS(T) ) ∫0

∞
dE′ exp[-E′/kBT] ∫0

E′
dE FJPS(E) (9)

I JPS(T) ) ∑
γ

Iγ
JPS(T) (10)

kJPS(T) ) ∑
γ

kγ
JPS(T) (11)

knf
JPS(T) ) ∑

γ

kγ,nf
JPS (T) (12)
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Table 6 shows thekγ
JPS as a percentage ofkJPS, at tempera-

tures of 300 and 800 K, for the variousJPS. The table enables
us to get a very detailed picture of the reaction, as we can see
how much each transition state contributes to the totalJPS-
specific rate constant of the reaction. Several interesting trends
are seen. We note that the contribution from a given state
changes as the total angular momentum changes. At 300 K with
J ) 0, the [000] state has almost all the contribution to the rate
constant, but asJ increases to 6, the contribution drops by about
15%. At 800 K the drop in the contribution from the [000] state
whenJ increases from 0 to 6 is about 24%. AsJ increases, a
greater contribution to the rate constant comes from bend excited
states. For a given value ofJ, we can expect the contribution
to the rate constant to decrease monotonically asV2 increases
within a givenV1 manifold. This expectation is substantially
borne out; however, there are exceptions, most prominently [040]
in 0++ at 300 K, [071] in 1++ at 300 K, and [020] in 1-+,
2++, and 6++ at 300 K. The contributions to the rate constant
from the various transition states at 800 K almost always
decrease monotonically asV2 increases within a givenV1

manifold. The supernumerary state has a greater contribution
than the corresponding variational transition state at both
temperatures considered, except for 0++ at 800 K, where the
[100] state has a greater contribution than the [s100] supernu-
merary.

Parts a-c of Figure 21 show the percentage contribution to
theJPS- and state-specific rate coefficient from each transition
state as a function of initial rotational quantum number, for
initial vibrational quantum numberV ) 0, with JPS) 0++,
1++, and 1-+, respectively. The figures show that the major
contribution to a given initial (V, j) state-specific rate coefficient
at a givenJPScomes from few transition states in a narrow
range ofj values within theV manifold. Figures 18-20 showed
that there is correlation between the reactants’ rotational
quantum numberj and the bend quantum numberV2 of the
transition state. We find here that the same|j - V2| e 3 relation
helps in determining which transition state (with a givenV2)
contributes substantially to the state-specific rate coefficient (for
a state with rotational quantum numberj).

Parts a-c of Figure 22 show plots of the relative translational
energy at the dynamical reaction thresholds for accurate quantum
(solid) and VTST (dashed) as a function of the rotational
quantum number of theV ) 0 state for variousJPS. The quantal

dynamical reaction threshold is defined as4 the energy at which
the state-specific reaction probability first reaches a value of
0.03. The VTST dynamical reaction threshold is defined as that
transition state with the lowestEγ for which the partial
transmission coefficientκγVj is greater than or equal to 0.03.
We see that the local maxima and minima of the solid curve
are correlated with those of the dashed curve. The partial
transmission coefficient for a given transition state is obtained
by fitting the state-specific DORS for a certain initial (V, j) state
summed over all final states to a sum of line shape functions
and is proportional to the reactive flux through that transition
state from the initial (V, j) state. This allows us to relate the
partial transmission coefficient, and hence the coupling of a
given initial (V, j) state to a particular transition state, to the
state-specific reactivity.

For example, Figure 22a shows that as the rotational quantum
number increases fromj ) 0 to j ) 2 for JPS) 0++, the
relative translational energy decreases. Looking at Figure 18a,
which shows us the partial transmission coefficient as a function
of rotational quantum number forJPS) 0++, we see that the
reactive flux out of statesj ) 0 and j ) 2 is mainly focused
through the [000] state. As different reactant states with
increasingj (and hence with increasing internal energy) focus
reactive flux through the same [000] state, the relative transla-
tional energy at the quantal dynamical reaction threshold
decreases. When the excitation level reachesj ) 4, though, the
reactive flux is no longer focused through the [000] state but
rather, as Figure 18a indicates, begins to pass through the [020]
state. Since the [020] state is higher in energy than the [000]
state, this causes the relative translational energy at the quantal
dynamical reaction threshold to rise. Hence, as for the H+ H2

reaction,4 it is possible to explain the dependence of state-
specific reactivity on the rotational quantum number by
considering how strongly the specific reactant state is coupled
to a given transition state.

Rotational Constants and Geometrical Interpretation of
the Dynamical Bottlenecks.We can obtain an estimate for the
rotational constantsBγ of the transition statesγ by considering
the Eγ values of the various transition states as a function of
the total angular momentumJ. The Eγ value for a given
resonance is a function ofJ and varies byBγJ(J + 1) as the
total angular momentum changes.43,44 As noted above, the
density of reactive states increases as the total angular momen-

TABLE 6: Contribution, kγ
JPS(T), from Each Transition State, γ, as a Percentage of the TotalJPS-Resolved Rate Coefficient,

kJPS(T), Shown in the Last Row in Units of cm3 Molecule-1 s-1, at Temperatures of 300 and 800 K

kγ
0++(T) kγ

1++(T) kγ
1-+(T) kγ

2++(T) kγ
6++(T)

[γ1γ2
K] 300 K 800 K 300 K 800 K 300 K 800 K 300 K 800 K 300 K 800 K

[000] 99.2 93.4 90.0 73.2 89.0 70.3 86.7 69.5
[011] 96.9 91.9 4.63 17.8 4.46 16.81 4.52 16.6
[020] 0.24 5.51 5.34 6.98 6.46 10.51 8.70 10.6
[031] 2.38 7.00 9.9(-3) 1.00 6.2(-2) 1.22 3.7(-2) 1.76
[040] 0.54 0.62 1.7(-3) 0.22 1.3(-4) 0.29 7.1(-5) 0.32
[051] 3.2(-4) 0.50 5.5(-6) 0.11 2.7(-6) 9.2(-2) 6.1(-6) 0.16
[060] 1.7(-8)a 7.0(-3) 1.9(-8) 7.1(-3) 1.5(-7) 3.9(-2) 3.5(-7) 6.8(-2)
[071] 0.75 0.16
[100] 2.5(-5) 0.27 2.8(-5) 0.25 3.0(-5) 0.25 3.4(-5) 0.27
[111] 4.2(-5) 0.38 1.9(-6) 6.9(-2) 6.0(-6) 9.9(-2) 2.5(-6) 6.7(-2)
[120] 1.4(-7) 2.8(-2) 1.8(-7) 3.0(-2) 7.6(-7) 6.1(-2) 3.5(-5) 9.9(-2)
[131] 1.3(-7) 5.3(-2) 2.4(-8) 2.2(-2) 1.1(-7) 3.2(-2) 1.5(-7) 5.8(-2)
[s100] 1.7(-4) 0.18 3.6(-4) 0.30 3.9(-4) 0.31 4.7(-4) 0.36
[s120] 1.1(-6) 4.7(-2)
[s200] 1.3(-8) 1.7(-2) 1.4(-8) 1.4(-2) 1.5(-8) 1.6(-2) 1.7(-8) 1.7(-2)
nab 3.5(-9) 5.3(-3)

kJPS(T) 7.83(-17) 1.83(-15) 3.85(-18) 4.60(-16) 7.84(-17) 2.23(-15) 7.61(-17) 2.28(-15) 5.38(-17) 1.99(-15)

a Numbers in parentheses denote multiplicative powers of 10.b This feature was not assigned.
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tum increases, and this tends to obscure the features in the higher
total angular momentum DORS curves. We therefore chose four
prominent and representative peaks that are easily distinguished
in the DORS curve to obtain an estimate of the rotational
constant. The states we chose were [000], [s100], [100], and, a
state both stretch- and bend-excited, [120]. Table 7 shows the
fitted Eγ values for each of these states for different values of
the total angular momentum and the resulting quantal estimate
for the rotational constant.

We can also obtain a value for the rotational constant from
the moment of inertiaIγ of the structure corresponding to
transition stateγ sinceB ) p2/2I. Figure 23 shows the VA
curves for the four states considered above, the values ofB along
the reaction path, and the values of the distances between the
three atoms involved the reaction at various points along the
reaction path. From the plot of theB value versus the distance

from the saddle point, we see that as we get closer to the saddle
point, the value ofB increases; i.e., the moment of inertia
decreases. This indicates that the transition state structure
“tightens” as we approach the saddle point and is “looser” the
further we are from it. We find that the quantal estimates ofB
follow this trend as well. We can calculate the moment of inertia
from the geometry at the maximum of the vibrationally adiabatic
curveVa(γ, s). Table 7 also shows the value ofB calculated by
the program ABCRATE at the dynamical bottlenecks of the
VA curves for the various transition states. A state such as [120],
which is both bend- and stretch-excited, is tighter than a state
such as [100], which has no bend excitations.Bγ should,
therefore, be larger for the tighter state, and this trend is observed
in both the quantal and semiclassical estimates forBγ. This

Figure 21. Percentage contribution to theJPS- and state-specific rate
coefficient as a function of the rotational quantum numberj for
vibrational quantum numberV ) 0 for (a) JPS) 0++, (b) JPS)
1++, and (c)JPS) 1-+.

Figure 22. Relative translational energy at the dynamical reaction
threshold as a function of the rotational quantum numberj for
vibrational quantum numberV ) 0 from accurate quantum (solid) and
from VTST (dashed) for (a)JPS) 0++, (b) JPS) 1++, and (c)JPS
) 1-+. See text for the definitions of the dynamical reaction thresholds.
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provides a satisfying confirmation of the fact that the dynamical
bottleneck is localized even for accurate quantal dynamics.

Since the reaction-path calculations ofBγ agree so well with
the accurate quantal values ofBγ, we can use the reaction-path
calculations to get insight into the geometries of the various
dynamical bottlenecks. The first section of Table 8, labeled
semiclassical, shows the values obtained from the maxima of
the corresponding VA curves. For the second section, labeled
quantal, we tabulate the values at the nearest point along the
MEP that has aB value in exact agreement with the values
calculated fromJ ) 0 and 6 in Table 7. We see that the
semiclassical and quantal estimates of the geometry of the
different dynamical bottlenecks agree quite well. There are,
however, differences in the locations of dynamical bottlenecks
as predicted by the quantum calculations and the semiclassical
calculations. Thus, the semiclassical estimate of the location of
the bottleneck for the [000] state is closer to the saddle point (a
“looser” transition state) than the quantal estimate. For the
stretch-excited states [100], [s100], and [200], however, the
quantal estimates are “tighter” and the dynamical bottlenecks
are predicted to be closer to the saddle point than the semiclas-
sical estimations. This is reflected in the geometries of the

various transition states as well, as can be seen from therHH

and rClH distances.
Lifetimes of the Transition States. By considering the

transition states as resonances, we can utilize the language of
scattering theory, wherein we consider the resonances as poles
in the S matrix.5 For each transition state (or resonance)γ, we
may write the energy of the corresponding pole in the scattering
matrix as5

whereEγ is the real part of the energy of the resonance, andΓγ
its width. The width is related to the lifetimeτγ, by the relation5

wherep is h/2π. We note that this is the lifetime at the center
of the resonance, and it should not be confused with the lifetime
averaged over the resonance width; the latter quantity is a factor
of two smaller. For the parabolic effective energy barrier4,45

assumption that we use, the lifetime is related to the width
parameter,Wγ as5

Table 9 shows the lifetimes of all the assigned states for the
variousJPSvalues we have considered. Examination of fits in
which we varied the widths of the peaks indicates that the widths
are known to about 15%, except for the [060] state, where the
uncertainty is larger (∼30%). Certain definite trends in the
values of the lifetimes are observed, and these trends involve
variations larger than these uncertainties. We note that the
lifetime of a particular resonance is related to the imaginary
part of the energy in eq 13 by eqs 14 and 15, while theEγ
value of the resonance corresponds to the real part of the energy.
We find that the lifetime for a particular transition state is nearly
constant as the total angular momentum changes. This trend
for a nearly constant lifetime asJ changes can be compared to
the nearly constant value for theEγ of the transition state asJ
changes. We also see that within theV1 ) 0 (non-stretch-excited)
manifold, the lifetime first seems to decrease asV2 increases
from 0 to 4 and then afterV2 ) 4 begins increasing again. The
initial decrease in the lifetime is consistent with the non-stretch-
excited VA curves which, as the bend quantum number
increases, show that tunneling becomes more facile, thus
increasing the width of the features and decreasing the lifetime
of the transition states. We are unsure of why the lifetime would
then increase after a certain level of bend excitation. Not enough
stretch-excited states are present to observe the trend with the
bending energy for the stretch-excited states.

The lifetimes obtained from the width parameters of the fits
to the quantum data can be compared to the lifetimes obtained
from the VA curves. For each transition stateγ listed in Table

TABLE 7: Quantal Estimate for the Rotational Constant B, Along with the Value of B Calculated from the Moment of Inertia

[ν1ν2
K]

J ) 0
Eγ (eV)

J ) 2
Eγ (eV)

J ) 6
Eγ (eV)

B (eV) from
J ) 0 and 6

B (eV) from
J ) 2 and 6

B (eV) from
ABCRATEa

[000] 0.4817 0.4834 0.4934 2.80× 10-4 2.80× 10-4 2.84× 10-4

[s100] 0.7553 0.7568 0.7666 2.70× 10-4 2.73× 10-4 2.28× 10-4

[100] 0.8508 0.8520 0.8591 1.97× 10-4 1.96× 10-4 1.89× 10-4

[120] 0.9821 0.9835 0.9929 2.57× 10-4 2.62× 10-4 2.12× 10-4

a Using the moment of inertia as calculated by ABCRATE withJ ) 0.

Figure 23. Reaction path properties as functions of reaction coordinate
s: (a) VMEP and VA curve for [000]; (b) VA curves for [100] and [120];
(c) B ) 1/(2I); (d) H-Cl (dark line) and H-H (light line) bond
distances.

Eh ) Eγ - i
Γγ

2
(13)

τγ ) 2p
Γγ

(14)

τR ) p
πWR

(15)
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9, we fit a segment of the VA curve that extends approximately
(0.01 Å on each side of the dynamical bottleneck to a parabolic
function

whereVa(γ, s) is the vibrationally adiabatic energy,Vγ
0 is the

maximum of the VA curve in the region of the dynamical
bottleneck,kγ is a force constant (defined here as the negative
of the usual force constant),s is the distance along the reaction
path, andsγ

0 is the position of the dynamical bottleneck along
the reaction path. Using a quantum mechanical analysis of the
tunneling through an effective potential barrier,4,45 it can be
shown that the parameterkγ is related to the width parameter
Wγ by the relation

whereµ is the reduced mass of the isoinertial coordinate system
in which Va(γ, s) is expressed. We then calculate the lifetime
using eq 15. The final column of Table 9 lists the lifetimes
calculated using the semiclassical VA curves for zero total
angular momentum. We see that the semiclassical lifetimes are
in reasonably good agreement with most of the quantal
estimates. We note, however, that the semiclassical lifetimes
in theV1 ) 0 manifold monotonically decrease with increasing
V2, while the quantal lifetimes in the same manifold decrease
and then increase afterV2 ) 4.

V. Conclusions

The analysis of rate constants in terms of the energies,
lifetimes, and transmission coefficients of quantized transition
states provides the finest level of detail allowed by quantum

mechanics. In this paper we have analyzed the accurate quantal
microcanonical-ensemble rate constants for the Cl+ H2 reaction
by resolving and characterizing the quantized features in the
cumulative reaction probabilities that contain all the dynamical
information in these rate constants. We examined total energies
up to 1.1 eV and total angular momentum in the rangeJ ) 0 to
J ) 6. We find in all cases that the reaction is controlled by the
quantized nature of the transition state energy levels. We have
assigned the energy level spectrum for the transition state region
of this atom-diatom system by assuming it to be a triatomic
system with a missing degree of freedom, which is the reaction
coordinate at the transition state. We find that the assumption
of local vibrational adiabaticity is useful for labeling the levels
of the transition state, although, as for H+ H2 and O+ H2, the
reaction is not globally vibrationally adiabatic. We analyzed
the state-specific reaction probabilities as well, from which we
obtain a detailed picture of the state-to-state reactivity of the
system.

We also calculated theJPS-specific and state-specific rate
coefficients for the Cl+ H2 reaction forJPS) 0++, 1++,
and 1-+. Examination of the contribution from each transition
state to theJPS-specific rate coefficient as a function of the
reactant’s rotational quantum number allows us to explain the
dependence of the state-specific reactivity on the reactant’s
rotational quantum number in terms of the coupling of a
particular reactant state to a specific transition state.

Sometimes there are two sets of resonances with the same
sets of quantum numbers. We assign these to metastable states
centered at different positions along the reaction path. The
higher-energy one is called a variational transition state
resonance, and the lower-energy one is called a supernumerary
transition state resonance. All transition state resonances affect
at least one state-selected reaction probability; they vary in their
effect on the total reaction probability. All variational transition
state resonances and some supernumerary transition state
resonances (these are called supernumeraries of the first kind)
have nonzero transmission coefficientsκ for the total reactive
flux, and one can identify a continuous range ofκ values from
almost zero to about unity. Those supernumeraries for which
the κ associated with the total reactive flux is essentially zero
(too small for us to observe their effect) are called supernu-
meraries of the second kind. In this paper we assigned
vibrational quantum numbersV1 and V2 to twelve different
variational transition state resonances, three different supernu-
meraries of the first kind, and one supernumerary of the second
kind. Of the twelve variational transition state resonances, six
were identified for four of theJPSblocks, namelyJPS) 0++,
1-+, 2++, and 6++, five were identified forJPS) 1-+,
1++, 2++, and 6++, and one was identified only forJPS)
1++. Of the three supernumeraries of the first kind, two were
identified forJPS) 0++, 1-+, 2++, and 6++, and one was
identified only for JPS ) 6++. The supernumerary of the
second kind was identified only forJPS) 1++.

By comparing the energetic positions of the resonances for
different total angular momentum, we have obtained an estimate
for the rotational constantB for four of the transition state energy

TABLE 8: Geometries and Potential Energies at Dynamical Bottlenecks

semiclassical quantal

[ν1ν2
K] s (Å) rClH (Å) rHH (Å) V(eV) s (Å) rClH (Å) rHH (Å) V(eV)

[000] -0.01 1.41 0.98 0.511 -0.07 1.49 0.87 0.499
[s100] 0.33 1.28 1.54 0.729 0.13 1.30 1.23 0.541
[100] -0.53 2.00 0.75 0.846 -0.48 1.95 0.75 0.845
[120] 0.27 1.28 1.44 0.830 0.19 1.29 1.32 0.741

TABLE 9: Lifetimes (fs) of the Transition State Resonances
for Various JPS from Quantum Results and the Comparison
to Lifetimes from the Semiclassical Vibrationally Adiabatic
Curvesa

[ν1ν2
K] 0++ 1++ 1-+ 2++ 6++ semiclassicalb

[000] 14 14 14 14 8.6
[011] 10 10 10 10 8.5
[020] 9 7 7 7 6.2
[031] 7 8 7 8 5.6
[040] 6 7 9 10 5.1
[051] 9 10 15 12 4.7
[060] 26 25 15 12 4.4
[071] 5 4.2
[100] 27 25 25 23 34.0
[111] 16 16 11 14 21.8
[120] 16 16 11 9 15.7
[131] 13 10 9 10 12.1
[s100] 28 22 21 19 20.3
[s120] 10 9.7
[s200] 30 30 28 28 36.1

a The lifetimes in the five columns headed byJPS are from the
accurate quantal calculations.b These results are forJ ) 0 and are
obtained from calculations of VA curves performed using ABCRATE.

Va(γ,s) ) Vγ
0 - 1

2
kγ(s - sγ

0)2 (16)

Wγ ) p
2π xkγ

µ
(17)
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levels, including three variational transition states and one
supernumerary transition state. The variation in the value of
the rotational constant between the various transition states
indicates the shift in the dynamical bottleneck of the reaction
for various stretch and bend excitations. The estimates of the
rotational constant from theJ dependence of transition state
resonance energies compare favorably with the estimates from
the moments of inertia, and this allows us to infer the geometries
of the various dynamical bottlenecks.

The widths of the features in the transition state spectrum
provide estimates of the transition state lifetimes, which range
from 6 to 30 fs. These may be compared to values of 5 to 36
fs obtained from a parabolic tunneling analysis employing the
vibrationally adiabatic potential energy curves. The vibrationally
adiabatic potential curves provide a semiquantitative rationaliza-
tion of the lifetimes of the variational transition states, but they
do not explain the nonmonotonic dependence of lifetime on the
bend quantum number.
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