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This paper discusses converged quantum mechanical scattering calculations for the reattldn-€IHCI

+ H and its reverse and analyzes them for the properties of quantized dynamical bottlenecks controlling the
total and state-specific microcanonical-ensemble rate constants. These rate constants show clear evidence for
quantized transition states. We assign bend and stretch quantum numbers to the transition states for total
angular momentund = 0 with parityP = +1, forJ = 1 with P = +1 and—1, and forJ = 2 and 6 withP

= +1. Then, state-specific densities of reactive states (transition state spectra) are examined to obtain a detailed
picture of the reaction. A quantal estimate of the rotational condBarfitr several different transition states

is obtained by comparing transition state energies at different values of the total angular momentum. These
quantal estimates are in good agreement with the values calculated from the moments of inertia, and this
enables us to interpret the results in terms of state-dependent geometries for the individual dynamical
bottlenecks. By treating the transition states as poles in the scattering matrix, we also obtain estimates for the
lifetimes of the states. Thé&P-specific rate coefficients, the reactant-state-specific rate coefficients, and the
contribution from each transition state to thie-specific and the reactant-state-specified rate coefficient are

also calculated and the trends analyzed. These trends help explain the dependence of the rate coefficient on
initial vibrational and rotational quantum numbers.

I. Introduction maxima. These are called supernumerary transition states, and

Recent work has established that the flux through dynamical t_hey have been fu_rther classified into supernumeraries of the
bottleneck regions of potential energy surfaces is gated by af'rSt and second kmqgﬁ The supernumera;ry phenomena have
series of quantum mechanical resonances that correspond té)eep f.uIIy analyzeq in the © Hy systerrrl, but so fsalrgonly a
discrete steps in the cumulative reaction probability as the energypr?:“mmary analysis _hals been zixallafble for{:IHz._ ’h &
is raisedt—2 The steps are broadened by quantum mechanical (I)r a mllcrocanonlcamensem Pe 0 ;ystems wit eln gy
tunneling. Several reviews are available, covering both theory total angular momenturd, parity P, and permutational sym-
and experiment:7 The resonances, like all resonances, cor- metry S the rate constant is given by
respond to poles of the scattering matrix (S mat#i¥f The

JP
classical analogues of the resonances are periodic orbits for KPS = N S(E) (1)
systems with two degrees of freed&rand reduced-dimensional he™"SE)
tori or quasiperiodic orbits in systems with more degrees of
freedom?* whereh is Planck’s constan®R'PE) is the density of states

Atom—diatom reactions have six vibrational degrees of Per unit energy and volume for reactants, &E) is the
freedom, excluding overall translation, and when the saddle cumulative reaction probability (CRP) given by
point structure is collinear, these are typically taken as four » ps
vibrations and two rotations. The transition state resonances of N S(E) = Zz Z: P 2)
several atorrrdiatom systems have been analyzed in great detail neR me
with assignments of vibrational quantum numbers, energies, and
resonance widths in the energy dom&iR!>18 The widths in - PR
the energy domain may be related to widths of effective a rea}ctant (R)_staten is a set of q”a”tg‘;'g _numbera(u,J,
tunneling barriers in coordinate space and to the lifetimes of @1d1") specifying a product (P) stat&,;”is a state-to-state
the quantum mechanical metastable states. reaction probabilitye. anda’ are arrangement quantum numbers
The resonance states may be understood most intuitively asWith & = 1 for reactant Ch- Ho states and’ = 2 or 3 for
quantized levels of variational transition states, which may in Product HCI + H states),v and v are vibrational guantum
turn be visualized as global maxima of state-specific effective NUMPErsj andj’ are rotational quantum numbers, dnahd|
potential curves as functions of a reaction coordidakevery aLeJPorbltql angular momentum quantum numbers. Notice that
interesting feature in the @ H, and Cl+ H, systems is the ~ "7 1E) is purely an _e(};uhbrl_um quantity, hence all the
existence of additional resonances corresponding to local dynamical information in’"SE) is contained in the CRP.

maxima of the effective potential curves that are not global The present paper presents well-converged CRPs for the Cl
+ H; reaction and its reverse (HCH H) for total angular

t University of Minnesota. momentaJPS = O++, 1++, 1-+, 2++, and 6+ and _
*NASA Ames Research Center. analyzes them in terms of resonances corresponding to varia-

wheren is a set of quantum numbers, (v, j, andl) specifying
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tional and supernumerary transition states. In addition, we odd parity spectrum. We also obtain the {D&tate giving a

examine the implications of these transition state resonancestotal degeneracy of 3 for the, = 2 excitation. The transition

for state-specific reactivity of both the forward and reverse states differing in only th& values are in fact nondegenerate

reactions, questions explored most fully in previous work for due to anharmonicity® they are, however, too close in energy

H + Hy**and O+ H,.15 All calculations in this paper employ  to be resolved in our calculatioAsThus, the [02] and [0Z]

the realistic G3 potential energy surf&t¢PES) for CIH, which states overlap each other and are seen as just one feature. To

has been showf??to lead to good agreement with experiment.  stress this point, we designate the state a§840ZNote that

The classical barrier height on this potential energy surface is theK states are harder to resolve than drstates becauge is

0.3417 eV for the forward reaction and 0.2111 eV for the reverse not a conserved quantum number, and the differerstates

reaction. always appear as heavily overlapped features. In contrast, we
Section Il presents the computational methods. Section IIl can look at different states in different spectra.)

has results, and these are analyzed and discussed in section IV. The assignments can be made using a variety of consider-

Section V presents concluding remarks. ations. We will use (i) information from semiclassically obtained
vibrationally adiabatic (VA) curveé8-32 for the Cl + H,
Il. Computational Methods reaction, (ii) a fit of the DORS curve to a sum of line shape

functions corresponding to tunneling through effective parabolic

IIl.A. Scattering Calculations. We used the outgoing wave  parriers, and (jii) state-to-state reaction probabilities and their
variational principlé®~2 (OWVP) to calculate the quantum  corresponding state-to-state DORSs.

mechanical CRP of the reaction of Cl and. IDetails of these The VA curves are defined by the equafibn

calculations as well as a description of the methods and

algorithms used have been presented previotishs before, V., (V1 ¥y K, §) = VyyeolS) + € (v1, v, K, 9) 3)
a\vl1r V21 T MEP! int\"'1r 20 T

we used masses of 67384.72 au and 1837.153 ati@band

1H, respectively. We started with the data given in the ) ) .

supplementary information of ref 21. We also performed Where s is the distance along the reaction path, through
calculations of the CRP for values of the total angular isoinertial coordinateé8 with a reduced mass m‘ of 3484.32
momentumIPS= 1++, 1—+, 2++, and 6-+ at energies from  @mu.s= 0 corresponds to the saddle poivfer is the Born-
0.33 to 0.99 eV, all with an energy spacing of 0.02 eV, and at OPPenheimer potential energy along the minimum energy
energies from 1.0 to 1.1 eV at an energy spacing of 0.01 eV. "éaction path (MEP), anen is the vibrational energy of the
For the new calculations, we used the same scattering basis sef0des excluding motion along the reaction coordinate. The VA
parameters and screening parameters as shown in set A of Tabl&Urves are obtained by using the program ABCRATMEherein

2 of ref 21. By merging these new calculations with the data the MEP is calculated using the steepest descent m&tbod
presented in ref 21, we have CRP data in the energy range fromP0th sides of the saddle point, the quantized energies of the
0.32 to 1.1 eV at a energy spacing of 0.01 eV for the five Strétching modes are approximated by the WKB mettidd,

combinations of quantum numberdPS= 0++, 1++, 1—+ and the quantized energies of the bends are obtained from a
24+ and G-+ ' ’ ' centrifugal oscillator treatme#*°using a quadratic-quartic fit

II.B. Extraction of Transition-State Resonance Param- to the two-dimensional potential for bending motions.

eters. For eachJPSconsidered, we fiN?PYE) as a function of We can obtain an approximation to the DORS by using
energyE to a cubic spling function. The energy derivative Va”a.“‘?ﬂa' transition state thedty(VTST) corrected for_ the
dNPPSE)/dE of the spline fit to the CRP gives us the density of p053|_b_|llty of tunneling and for t_he fact that even the varlat_|onal
reactive stated,called p?®E) or the DORS. We obtain the transition state may be an !mperfect bottlengck. Using a
DORS curve by taking the first derivative of the spline fit to pgrabollc Eﬁec“"? energy barrier allows us to write an expres-
the CRP. The density of reactive states has structure that ca ion for the dgr)sny of states as a sum of line shape functions
be attributed to the presence of quantized transition states ofl®" €ach transition statg given by’
the reactior?.

The features in the DORS plot that correspond to energy P x,explE, — E)/W,]
levels of the quantized transition state can be assigned to a setP ®= z KyPy = z )
[v122K] of transition state quantum numbers, whegeand v, 4 14 Wy{l + eXp[(Ey - E)/Wy]}
are stretch and bend quantum numbers for motions transverse (4)
to the reaction coordinate and is the vibrational angular
momentun®® The vibrational angular momentum arises due to whereW, is the width parameter of the resonance centered at
the superposition of the two degenerate bending vibrations of E,, andk, is a parameter that we may call the level-dependent
the triatomic system. Thus, if a harmonic bending vibration is transmission coefficient. Ideallys, should be unity (if the
excited byv, quanta, the degree of degeneracy.is- 1.2° The variational transition states were perfect dynamical bottlenecks).
state with zero-point vibration is nondegenerate. The values that ~State-specific spectra are also useful in assigning the quantum
the vibrational angular momentum quantum nuntbean take numbers to the transition states. The state-specific reaction
areK = vy, v2 — 2,15 — 4, ..., 0 or 1, with the restriction that  probabilities are obtained by selectively summing the reaction
K < J, since any one component of the angular momentum probabilities over certain vibrational or rotational states. We
can never exceed the total angular momentum. In addition, sincenote that the reactant state labelslenote a set of quantum
the bending mode is doubly degenerate, each statekvithO numbers consisting of the initial arrangement quantum number
is doubly degenerate with one odd and one even parity @, the diatomic vibrational quantum numbey the diatomic
component. Since we can perform parity-specific calculations, rotational quantum numbgrand the orbital angular momentum
we can resolve the two parity components. For example, as wequantum numbel. Similarly n denotesw’, ¢/, j', andl’. Thus,
show later in section Ill, whed = 2, vy; = 0, andv, = 2, we to obtain vibrationally specific reaction probabilitiéstjf,s, we
obtain the doubly degenerate state?]Q%ith one component sum over the reaction probabiliti@®"% .. for all j, j', I,
showing up in the even parity spectrum and the other in the andl’ values and fo' = 2 and 3 witha = 1:
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The vibrationally specific DORS is obtained by an analytic
derivative of a cubic spline fit to the vibrationally specific
reaction probability o°"% (E).
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In a similar fashion we can sum either over all initial states
or over all final states for a specific final or initial state to obtain

reaction probabilities N)7° or NJ™9 and the corresponding

JPS JP. . L e
DORS _(Ln' or pnf) that are final- or initial-state-specific,
respectively.
Ill. Results

We present the results for the varialRSvalues below. The
parity, P, is defined a® = (—1)*' which always gives a-1
parity ford =0 (j = 1), and two parities+1 (even) and-1
(odd)] forJd > 0. The spatial permutation symmetry teBmay
be defined for atomdiatom reactions such as X H, — XH
+ H and is related to the nuclear spin functiéh= +1 for
para hydrogen and—1 for ortho hydrogen. All the results
presented below have= +1.

JPS = 0++. Figure 1 shows the accurate quantal CRP,
NIPSE), as squares, falPS= 0++. A spline fit to the CRP
data (which is shown as the solid line in Figure 1) is then
analytically differentiated to obtain the first derivative of the
CRP with respect to energy, i.e., the DORS curve. This is shown

as the dashed line in Figure 1. We see seven features, namely,

six peaks and a shoulder. We will use the method outlined above
where we fit the DORS curve to a sum of line shape functions
defined by eq 4. We treat/,, E,, andk, as adjustable param-
eters in our fit. We can reproduce the curve quite accurately by
using a sum of nine terms. The line shape curves, their sum,
and the DORS curve are shown in Figure 2. The nine individual
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Figure 1. Accurate quantal cumulative reaction probability S
= 0++ (squares), spline fit to the CRP (solid line), and density of
reactive states (dashed line) as functions of the energiA8r= 0++.
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Figure 2. Line shape functions (dashed lines), their sum (solid line),

and the density of reactive states (squares) as a function of the energy
for JPS= 0++.
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TABLE 1: Enax Values for the Features in the DORS

bell-shaped curves are shown as dotted lines and their sum a<urves, the Transition State Assignments, the Semiclassical

squares. The sum is seen to be an excellent fit to the solid line,
which is the DORS plot, obtained from the quantum calcula-

tions. Each of the line shape functions corresponds to a transition
state and may be assigned a label consisting of the quantumfeature (DORS)

numbers §122K]. The value of the energy (at the maximum,

unless specifically stated to be at a different place) of each
feature or theEnax value, the assignments, the semiclasssical
energies from the VA curves, and the fit parameters for each
of the line shape functions are shown in Table 1. The root-
mean-square (RMS) error of the fit over the energy range-0.32

1.1 eV is 0.14 eV The assignments are explained in detail

below. The semiclassical energy of the VA curve corresponds
to the energy of the dynamical bottleneck, which, for nonstretch
excited states, is the highest point on the curve on either the
product side or the reactant side of the reaction coordinate. For

Energies from the VA Curves, and the Fit Parameters for
S=0++

Emax (V) semiclassical
pwX] energy(eV) W, E,(eV) «,
1 0.481 [0q] 0.511 0.015 0.482 1.01
2 0.664 [02] 0.757 0.023 0.663 0.75
3 0.756 [s19 0.729 0.008 0.755 0.11
4 0.851 [o4 1.071 0.035 0.847 0.91
5 0.851 [16] 0.846 0.008 0.851 0.66
6 0.991 [12] 1.028 0.013 0.982 0.43
7 1.000 [06] 1.426 0.008 1.001 0.15
8 1.048 [s29 1.037 0.007 1.048 0.74
9 1106 n& 0.020 1.098 0.42

aThe CRP data end at 1.1 e¥This feature was not assigned (see
text).

stretch-excited states, we choose the maximum of the curve that The VA curves forJ = 0 are shown in Figure 3&c. They

is not in the region of high reaction-path curvature. The

are also labeled byv[v,X]. Since the bends are treated by a

semiclassical energy of the supernumerary state is the energyquadratic-quartic fit to the bending potential, the semiclassical

at the maximum of the VA curve in the product side of the
reaction coordinate, again away from the region of high reaction-

energy thresholds obtained for high states are not expected
to be quantitatively accurate. The energies of the dg@nd v,

path curvature. We note that transition state theory assumes thastates should, however, correlate well with the quantized

all the«, for each transition state are unity. Several of the values
of the transmission coefficients, however, differ from this ideal.
This could be a result of the approximations made regarding
parabolic effective energy barriers or the fact that the state is
not an ideal dynamical bottleneck.

thresholds for the same states.

Feature 1 is easily assigned to the q0State, as it is the
overall reaction threshold. Feature 2 is assigned to thé [02
state since only even bend states are allowed fer0. (This
is becaus&K < JandK = v,, v — 2, ..., 0 or 1). Furthermore,



1490 J. Phys. Chem. A, Vol. 103, No. 11, 1999 Srinivasan et al.

the second kind (which influence only state-to-state reactivity).
As feature 3 clearly influences the total reactivity we classify it
as a supernumerary state of the first kind. Supernumeraries of
the second kind can be identified by looking at state-specific
spectra.

Figures 4a,b and 5a,b show the state-specific spectra for
various initial and final conditions. Parts a and b of Figure 4
show the state-to-state DORS curves for various inttiahd
final v values summed over thjeandj’ values. Parts a and b
of Figure 5 show the state-to-state DORS curves for various
individual initial (v, j) and final ¢/, j') channels. To use the
state-specific spectra to assign the stretch and bend quantum
numbers, we first note that, to the extent that a transition may

be considered vibrationally adiabatic, the stretch quantum
-1.1 -0.8 -0.5 -0.3 0.0 0.3 05 0.8 1.1 . . .

s b numbers,v1, have a propensity to correlate to the diatomic
vibrational quantum number.34! This is called half-collision
stretch adiabaticity. A vibrationally nonadiabatic traversal of
the path to the transition state leadsute® v;.

Figure 4a shows the state-to-state DORS curve .
The first two maxima of the curve correspond to features 1 and
2. This confirms our assignment of the features a$][@dd
[029], respectively. Since = v4, these two transition states are
vibrationally adiabatic transition states. The state-specific DORS
plot for all channels with initiabb = 0 summed over all and
for all final channels withs’ = 1 summed over alj’ is also
shown in Figure 4a. The first peak at ca. 0.73 eV indicates the
onset of flux into the product’ = 1 channel. This confirms
our assignment of feature 3 as the supernumerary staté.[s10

As noted earlier, comparisons with the semiclassical energy
thresholds from the VA curves become less useful in cases
where the bend is highly excited (i.er; = 2). We must,
therefore, use other methods to assign quantum numbers to the
high v, states. One of these is the energetic separation of the
states differing in only the bend quantum numbers in a given
v1 manifold. We can expect the energy separations of th¢][0
states to be an approximately linear functiorvgfat least for
small »,.2 On this basis, since the energy separation between
the maximum of feature 1 ([0) and feature 2 ([09) is 0.18
eV, and since the feature that is separated by about 0.18 eV
from the maximum of feature 2 is feature 4, we may assign
feature 4 to the [04]state. Feature 4 is also broader than features

Energy (eV)

Energy (eV)

Energy (eV)

0a | MEP 1 or 2 and this is in keeping with the tendency for the peaks
within a givenv; manifold to both broaden and shorten:as
o /¥ increases$.This tendency can be understood by looking at the
0.0 ; : : - : . - ) VA curves for a giverv;. Figure 3b shows the VA curves for
08 08 08 s"fi\) 08 05 o8 B [v1 =1, v, = 0, 1, =00, We see that as, increases the

peaks corresponding to the dynamical bottlenecks become

Figure 3. Vibrationally adiabatic curves in increasing order from the narrower, thus facilitating greater tunneling. In relation to the

second-lowest curve for (a) [J0[01Y], [029], [03Y], [049], [05Y], [06Y],

CRP curve this means that the sharp “steps” in the reaction
b) [10°7, [11Y, [129), [13Y, [149], [167, and (c) [20], [21Y], [229]. o . .
(Tge[ |$]\,e[st ngr\[,e ,0,]1 éacﬂ p[ang S[hoo\}vs mg ;S[ ﬂuﬁctign[of Ot]he probability become smoothed out, which translates to broadening
distance from the saddle point. of the peaks in the DORS curve.

The state-specific DORS curve for initia= 0 andj = 0, 2,
the energy of the second feature is well below the semiclassical4, 6, and 8 channels summed over all final channels is shown
energy threshold for states with = 1. Feature 3 appears at in Figure 5a. Flux from the (0,0) and (0,2) channels peaks
too low an energy to be the variational transition state][10 strongly at the energy of feature 1 (the {péhreshold) and
is, however, located very close to the semiclassical energy less strongly at that of feature 2 (the fpthreshold). The (0,4)
threshold of the product-like [PDvibrationally adiabatic state  channel, however, couples strongly to the%O0reshold but
(0.76 eV for feature 3 versus 0.73 eV for the semiclassical hardly couples at all to the [@Dthreshold. The reason for this
threshold from the VA curve). We therefore assign feature 3 to is understood if we compare the threshold energy for th€ [00
the supernumerary state [§LBupernumerary transition states  state, which is 0.482 eV, to the asymptotic energies of the (0,0),
have been identified earlier for other reactiéi%.They may (0,2), and (0,4) channels which are 0.268, 0.312, and 0.414 eV,
be considered as dynamical bottlenecks in the product channelrespectively. The difference between the threshold energy and
Supernumerary transition states have been classified into thosehe asymptotic energy is 0.214, 0.170, and 0.068 eV for the
of the first kind (which influence total reactivity) and those of (0,0), (0,2), and (0,4) channels, respectively. The (0,4) channel
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Figure 4. State-specific spectra for (a) initial= 0 and finals’ = 0, 1, and 2 summed over all initial and finaand (b) initialy = 1 and final
v' =0, 1, and 2 summed over all initial and finalAll panels are fodJPS= 0++.
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Figure 5. (a) State-specific spectra for initial=0,j =0, 2, ..., 8and = 1,j =0, 2, ..., 6. The topmost panel shows the total density of reactive
states for comparison. (b) State-specific spectra for fihat 0,j' =0, 1, ..., 24’ = 1,j’=0, 1, ..., 18, and’ = 2,j' =0, 1, ..., 8. All panels

are forJPS= 0++.

is, therefore, energetically accessible, and as in the Hi correlation between the rotational quantum number of the
reaction® we conclude that the reason that the channel does diatomic and the bend quantum number of the transition state.
not couple to the [0 threshold is not because the dynamics We discuss this in more detail in section IV. The (0,6) channel
of the reaction prevent it from doing so, but because of the couples to the [0% threshold. Thus we see that all these
nature of the PES. The fact that the (0,4) channel does not coupletransition states display good stretch adiabaticity. Figure 5a also
to the [00] state is also a specific example of a more general shows the state-selected DORS curve for initiat 1 andj =
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0, 2, 4, and 6 channels summed over all final channels. The 5
trends are similar to those described above. The (1,0) DORS 45!
curve shows a very strong maximum at the energy of feature 5.
We also find that the semiclassical energy of the’[ Hate is
within 5 meV of the maximum of feature 5. On the basis of the 3%
above evidence, we assign feature 5 to thé][4tate. The VA c °f
curves indicate that those states for which the stretch is nots ,, |
excited ¢1 = 0) allow far greater tunneling than those for which

stretch excitation is present. This is borne out by feature 5, which
is tall and thin compared to the non-stretch-excited states. 151

We assign feature 6 to the state {JL2nainly by looking at .
the state-specific DORS curves. Comparison to the semiclassical
energy is inconclusive, as the state is bend-excited. Figure 4b
shows the state-specific DORS curve for initie¢= 1 and final o o.a0 o7 070 o2 008 T or
v = 1 summed over all initial and fingl The curve has its Energy (eV)
first maximum at the threshold of [#0and a second maximum  Figure 6. Accurate quantal CRP (squares), spline fit to the CRP (solid
close to the energy of feature 6. Figure 5b shows that both theline), and density of reactive states (dashed line) as functions of the
initial (1,2) channel and the (1,4) channel have considerable energy forJPS= 1++.
flux close to the peak of feature 6. Thus, like the J1tate,
the [12] state is also vibrationally adiabatic.

Feature 7 is assigned to be the {D8tate since the initial
(0,8) channel displays considerable flux at the maximum of 20|
feature 7. Figure 5a shows that the difference between the energy
at the maximum of the (0,6) DORS curve and the (0,8) DORS
curve is about 0.15 eV. The difference in the energy at the
maximum of feature 7 and the energy at the maximum of feature
4 is also 0.15 eV, and this is only slightly smaller than the
spacing between the [f0and the [02] states and the [P
and the [04] states.

Features 8 and 9 overlap substantially. Only part of feature
9 is seen, since the quantum results are not available beyond :
1.1 eV. It is not possible to assign feature 9 unambiguously. o A NS
Due to the substantial overlap with feature 9, the assignment — °% 045 087 En‘:;’y @ 082 098 o7
of feature 8 is only provisional. Feature 8 is very close to the
semiclassical threshold energy for the product sidé][2tate,
differing from it by only 0.01 eV. The state-specific DORS
curve for the final’ = 2 summed over ajl is shown in Figure
5b. The curve shows a maximum at the energy of the maximum TABLE 2: Epax Values for the Features in the DORS
of feature 8. The initiab = 2 threshold is not energetically ac-  Curves, the Transition State Assignments, the Semiclassical
cessible, which implies that the feature is too low in energy to Eggfg'eliffm the VA Curves, and the Fit Parameters for
be the [20] state. Thus, we assign the feature to be, at least in . .
part, due to the [sstate. A more definitive assignment can- Emax (€V) ., Semiclassical
not be made until the CRP data for higher energies is available. €3¢ _(DORS) w2 energf(eV) W, & (V) «

p'H(E) (V)

25 r

p'H(E) (V)

10

Figure 7. Line shape functions (dashed lines), their sum (solid line),
and the density of reactive states (squares) as a function of the energy
for JPS= 1++.

JPS= 1++. The spectrum fodPS= 1++ will contain those 1 0.580 [0%] 0.617 0021 0581 0.99

v . . 2 0.769 [03] 0.905 0.029 0.768 0.97

features that havi = 1 and for whichu, is an odd number. 3 0.923 [11] 0.922 0013 0921 061
The accurate quantal CRP data (squares) as well as the spline 4 0.923 [08] 1.241 0.024 0.926 0.75
fit to the data (solid line) are shown in Figure 6. The DORS 5 1.012  [07Y 0.892 0.039 1.019 0.64
curve, obtained by an analytic first derivative of the spline fit 6 1.090 [13] 1.144 0.016 1.093 1.02

is shown as the dashed line in Figure 6. We fit the DORS curve  aThjs is the semiclassical energy fde= 0. This is the energy at
using a sum of line shape functions as we did for IRS= the minimum of the DORS curve just before feature 6.

O++ data. The curve is well approximated to plotting accuracy

by using a sum of six line shape functions. The line shape dynamical bottlenecks, up to at lédsA away from the saddle
functions, their sum, and the DORS curve are shown in Figure point, along the reaction path is of the order 0k210~* eV.

7. We make assignments to the features in the DORS curve inThus, forJ = 1, the change in the semiclassical energies from
terms of p12,X] as before, using methods similar to the ones theJ = 0 values, at the dynamical bottlenecks, is of the order
described above for th#PS= 0-++ spectrum. Table 2 shows of 4 x 1074 eV. For the purposes of comparing the semiclassical
the Emax value of each feature, the assignments, the semiclassi-energy of a transition state to the estimate of the energy from
cal energies from the VA curves, and the fit parameters for eachthe DORS curve fod = 1, we therefore use the semiclassical
of the transition states. The RMS error of the fit over the energy energies of thd = 0 curves and the semiclassical energies listed
range 0.321.1 eV is 0.13 eV, As the total angular momentum  in Table 2 are the ones far= 0.

J changes, the semiclassical energy of the dynamical bottleneck Since theJPS= 1++ DORS plot contains features only with
also changes by approximate®j(J + 1) whereB is the rota- odd v, values, the first feature is easily assigned to be'][01
tional constant of the system at the geometry of the dynamical The validity of this assignment is borne out by comparing the
bottleneck. For the Clpsystem the rotational constant at the energy of the maximum of the first feature, i.e., tBg.x value
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Figure 8. State-specific spectra for (a) initial= 0 and finale’ = 0, energy forJPS= 1-+.

1, and 2 summed over all initial and finpand (b) initialz = 1 and ] ) )
final ' =0, 1, and 2 summed over all initial and firjalAll panels are and 1 summed over ajllandj’ shows the onset of flux in the

for JPS= 1++. v =1 channel at the energy of the maximum of the third feature.

The fourth peak is assigned to be [5again, on the basis
of evidence from the state-specific DORS curves. The difference
in the E, values between the [@fland the [03] states is about
0.18 eV, and that between the [P3tate and the fourth feature,
about 0.16 eV. As fod = 0, we expect that the differences
between the energies of the states for succegsivalues at a
given value ofy; will be approximately constant.

The fifth feature may be assigned, in part, to the'[GIate.
The state-specific curves for initial= 0 and variou$ summed
over all final quantum numbers is shown in Figure 9a. The

2
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-2 sequence of peaks indicates the progressian vélues within
~20 ¢ v=1,j=2,4,6 ~5r v'=2j'=12,...8 thewv; = 0 manifold. The feature is, however, anomalously close
E}S I 33| ﬁ to the [05] state in energy. The reason for this is unclear. It is
wst| /r w, | possible that the fit distorts the true position of the state due to
c%_g . ‘ .\’. j_1 : : ‘ : the strong overlap of feature 5 with its neighboring features
032 051 070 089 1.07 0.32 081 070 089 107 (one of them an ill-defined feature 6).
Energy (eV) Energy (eV) The sixth feature is incomplete since we did not perform the

guantum calculations beyond 1.1 eV. A provisional assignment,

Fi 9. State- ifi tra for initial=0,] = 2, 4, ..., 10 . .
lgure 9. (a) State-specific spectra for initia J based on the state-specific spectra is the staf¢.[IBe DORS

andv =1, = 2, 4, 6. The topmost panel shows the total density of e ' - .
reactive states for comparison. (b) State-specific spectra foriral curve for initial» = 1 and finals’ = 2, summed ovey andj’,
0,j)=1,2,..,24) =1,j=1,2,..,18,and' =2,j’ =1, 2, ..., shows a peak at the energy of this feature. The finding of
8. All panels are fodPS= 1+ considerable flux in the initiab = 1 channel, the fact that the

feature is tall with a small width, and the location of the position

of the first feature, to the semiclassical energy. The values differ of the maximum of the feature in relation to tfg,.x of the
only by 0.04 eV. Parts a and b of Figure 8 show the state- [111] peak all indicate a stretch-excited feature. For future study
specific DORS curves for various values of initial and fimal it would be interesting to calculate CRP data at higher energies
quantum numbers summed over all initial and fipaParts a to help confirm the assignment.
and b of Figure 9 show the individual state-specific DORS JPS= 1—+. The accurate quantal CRP f#PS= 1—+, the
curves for various values of initial and finalandj quantum  spline fit to the data, and the DORS curve are shown in Figure
numbers. 10. The DORS curve is fit as before, with the fit requiring a

The state-specific DORS curve with initial= 0 andv' = sum of 13 line shape functions. Figure 11 shows the line shape
0, summed over ajlandj’ shows a maximum at the energy of functions, their sum, and the DORS curve. The DORS curve
the maximum of feature 1. Similar to the assignment of feature for JPS= 1—+ contains features with both even and odd values
1, we assign the second peak to{0&8lso on the basis of the  of v, andK values of both 0 and 1. Consequently, the features
state-specific spectra. The semiclassical energy comparison isof the JPS= 1++ spectrum should be duplicated in thieS=

unreliable at such high levels of bend excitation. As iniR& 1—+ spectrum and the features corresponding to XA8 =
= 0++ spectrum, both the features are due to stretch adiabatic1++ spectrum may be assigned using the previdB§= 1++,
transitions. assignments. The remaining features correspond to even

The third feature is a tall peak that has a small width, values. The even bend states will occur in positions close to
indicative, as in thed = 0 spectrum, of the onset of the stretch where they occurred in th#PS= 0++ spectrum. All theEnax
excitations. We have assigned the third feature to th§ [@\el, values, the assignments, the semiclassical energies frond the (
based on evidence from the state-specific DORS curves as well= 0) VA curves, and the fit parameters for each of the transition
as by comparisons to the semiclassical energy from the VA states are shown in Table 3. The RMS error of the fit in the
curve. The state-specific DORS curves for= 1 ands’ = 0 range 0.321.1 eV is 0.14 eVl
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Figure 11. Line shape functions (dashed lines), their sum (solid line),

and the density of reactive states (squares) as a function of the energy,

for JPS= 1—+.

TABLE 3: Enax Values for the Features in the DORS
Curves, the Transition State Assignments, the Semiclassical
Energies from the VA Curves, and the Fit Parameters for
JPS=1—+

Emax (€V) semiclassical
feature (DORS) pwX] energy(eV) W, E,(eV) «,
1 0.482 [00] 0.511 0.015 0.482 0.98
2 0.583 [04 0.617 0.021 0.578 0.89
3 0.660 [02] 0.757 0.029 0.666 1.06
4 0.760 [s16 0.729 0.010 0.756 0.22
5 0.806  [034 0.905 0.026 0.787 0.94
6 0.851 [10] 0.846 0.008 0.851 0.73
7 0.851 [04) 1.071 0.028 0.868 0.62
8 0.922 [14 0.922 0.013 0.920 0.54
9 0.922 [08] 1.241 0.021 0.931 0.89
10 0.989 [19] 1.028 0.013 0.984 0.59
11 0.989 [og]¢ 1.426 0.008 1.006 0.20
12 1.049 [s26)° 1.037 0.007 1.048 0.75
13 1.091 [13] 1.144 0.021 1.094 1.88

aThis is the semiclassical energy fbe= 0. ® This is at the minimum
of the DORS curve just before feature6lhe feature may include
the [07] state unresolved due to overlap (see text).

Features 1, 2, and 3 are easily assigned to the statés [00
[011], and [02], respectively. Feature 1 is the overall reaction
threshold and the assignments for features 2 and 3 follow from
the assignments in the spectral®S= 0++ andJPS= 1++.

Srinivasan et al.
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Figure 13. (a) State-specific spectra for initial=0,j =0, 2, ..., 8
andv=1,j =0, 2, ..., 6. The topmost panel shows the total density
of reactive states for comparison. (b) State-specific spectra fordinal
=0,j=0,1,..,24, =1,j=0,1, ..,18,and' = 2,j' =0, 1,

..., 8. All panels are fodPS= 1—+.

stretch adiabatic state [90 Analogous to the corresponding

The semiclassical energies comparisons are valid for small bendfeature in the]PS= 0++ spectrum we assign feature 7 as the

excitations such as, = 1 and comparing the semiclassical
energy for the [07] state to theEmax for feature 2 shows that
they differ by only about 0.03 eV.

Feature 4 is assigned to be the supernumerary’[stéate

on the basis of the comparison with the semiclassical energy.

[049] state. Both state-specific DORS curves as well as the
progression of th&, values for successive bend excitations in
the v1 = 0 manifold confirm the assignment. Following the
assignments in the spectradl®S= 1++ we assign features 8
and 9 to the states [3]land [05], respectively.

The feature occurs close to the same energy in the spectrum as Features 10 and 11 correspond to the state§ Hritd [06],

it does in theJ = 0 spectrum. The state-specific spectra for
various values of initial , j) and final ¢/, ") are shown in

respectively. The assignment is confirmed by the state-specific
DORS curves as well as the assignments of A& = 0+-+

Figures 12a,b and 13a,b. The spectra for the states with initial spectrum. Feature 12 is the supernumerary’[s28ate, indicated

v =0 and final’ = 1 show the threshold for flux into the final
v = 1 state at the energy of feature 4.

Feature 5 is assigned to the fP3tate on the basis of the
JPS= 1++ assignment as well as the state-specific DORS
curve of they = 0, v/ = 0 states. The DORS curve shows a
maximum at the energy of feature 5, which indicates flux out
of thev = 0 and into the/ = 0 state. Thus, this is also a stretch
adiabatic feature.

Thev = 1, v/ = 1 DORS curve in Figure 12b shows the
threshold for flux into the produat = 1 channels at the energy

by both a comparison with the semiclassical energy as well as
by the state-specific DORS curve, which shows flux into the
final v/ = 2 state. The feature also probably includes thé][07
state, which is seen in th#PS= 1++ spectrum. The higher
density of states of the-1-+ spectrum and the resulting overlap
of features leads to the obscuring of some features that are
present in the “cleaner”,£+, spectrum.

The 13th, final, feature is ill defined and incomplete due to
the lack of CRP data at higher energies. We provisionally assign
this feature to the [13} state on the basis of the assignment

of the sixth feature. We therefore assign the sixth feature as themade in theJPS= 1++ spectrum as well by looking at the
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) o . Figure 16. Accurate quantal CRP (squares), spline fit to the CRP (solid
Figure 14. Accurate quantal CRP (squares), spline fit to the CRP (solid |ine) and density of reactive states (dashed line) as a function of the
line), and density of reactive states (dashed line) as functions of the gnergy foraPS= 6++.
energy forJPS= 2++.
shape functions are shown in Figure 15. We assigned quantum
numbers J12.X] to the features of the DORS curve using the
assignments we made for ti®S= 0++, 1++, and -+
spectra as our guide. ThEmax value of each feature, the
assignments, and the fit parameters for the 13 transition states
are presented in Table 4. The RMS error of the fit over the
range 0.321.1 eV is 0.12 eV

We note that several of the, values are greater than 1. As
discussed in section I, this is becauseJor 2, K = 0 and 2
for the even bend states and 1 for the odd bend states. Further,
states for whictK > 0 are doubly degenerate. Thus, the third
feature contains both the [fJ2and one of the [0] states and
is designated as [02]. The JPS= 2—+ spectrum (which is
s N y not shown) contains the other {)2state. Table 4 lists the
0.32 s 057 070 0.82 0.95 107 degeneracies of each level as well as the running sum of the

Energy (eV) degeneracies. We note that the running sum of the degeneracies

Figure 15. Line shape functions (dashed lines), their sum (solid line), UP t0 @ particular state approximately corresponds to the value
and the density of reactive states (squares) as a function of the energyof the CRP at theE, of that state, almost up to 1 eV. The

50

a5 |

for JPS= 2++. differentK values are not resolved since the separation for states
differing only in K values is small compared to the separation

state-specific DORS curves for channels with initial= 1, between states differing in bend and stretch quantum nurhbers.

which show flux around th&max of feature 13. Thus, we find that the, values for bend states with > 2 are

JPS=2++. The CRP data fodPS= 2++ is shown, along greater than 1, indicating the presence of other, unresolved states
with a spline fit to the data, in Figure 14. The spline fit is differing only in the value oK. This is seen in features 3, 5, 7,
analytically differentiated to give the DORS curve also shown 10, and 11.
in Figure 14, as the dashed line. We fit the DORS curve, as JPS= 6++. Figure 16 shows the CRP data fii*S= 6+,
before, using a sum of line shape functions. We can reproducethe spline fit to the data, and the DORS curve obtained by
the curve quite well using 13 line shape functions. The line differentiating the spline fit analytically. We fit the DORS curve

TABLE 4: Enax Values for the Features in the DORS Curves, the Transition State Assignments, the Fit Parameters, the
Degeneracy of Each Transition State, and the Running Sum of Degeneracies foPS = 2++

Emax (V) running
feature (DORS) K] W, E, (eV) Ky degeneracy sum
1 0.483 [00] 0.015 0.483 0.98 1 1
2 0.586 [04 0.021 0.579 0.87 1 2
3 0.682 [027 0.029 0.680 2.01 11 4
4 0.758 [s10 0.010 0.757 0.24 4
5 0.798 [03Y 0.029 0.796 1.26 1 5
6 0.853 [10] 0.009 0.852 0.77 1 6
7 0.853 [047 0.023 0.868 0.96 11 8
8 0.922 [14 0.020 0.916 0.69 1 9
9 0.922 [08] 0.014 0.925 0.77 1 10
10 0.957 [1209 0.019 0.984 1.13 11 12
11 1.003 [083 0.014 1.007 1.07 1,1 14
12 1.049 [s20 0.007 1.049 0.84 14
13 1.086 [13] 0.024 1.095 2.73 1 15

aMultiple degeneracies are listed for states with the samand v, but differentK values.? At the minimum of the DORS curve just before
feature 6.° At the minimum of the DORS curve just before feature 11.
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o degeneracy of each state and the running sum of the degenera-
cies are also listed in Table 5. Again, we note that the running
sum for a state at a given energy is approximately equal to the
CRP at that energy up to about 1 eV.

60

o
S
T

IV. Discussion and Analysis

IS
=}

With the above assignments of stretch and bend quantum
numbers to the features in the DORS curve obtained from the
quantal CRP for different values of the total angular momentum
J, we may conclude that the Gt H; reaction is controlled by
guantized transition states, at least up to 1.1 eV and fer0,

1, 2, and 6.
: Partial Transmission Coefficients and State-Specific Pro-
032 045 057 0.70 082 095 07 cessesTo quantify the coupling between the initial or final states

E (ev) " . “ . L.
neravie and the transition states, we consider the “partial transmission

Figure 17. Line shape functions (dashed lines), their sum (solid line), ~qatficients” « ,i OF i, associated with a particular channel
and the density of reactive states (squares) as a function of the energy, . SN Vt.' | dat it tateWe obtai
for JPS= 6++. (v, )) or (v',]"), respectively, and a transition stateWe obtain

the state-specific transmission coefficients by fitting the state-
to a sum of line shape functions as before. We find that we get specific DORS curves to a sum of line shape functions as we
a good fit by using 14 terms in the sum. The line shape functions did for the total DORS. In this case, however, we fix the
and their sum are shown in Figure 17. Thegax value of each and the width parameters to the values obtained from the total
feature, the assignments, and the fit parameters of the 14fit and permit only the transmission coefficient parameter to
transition states are listed in Table 5. The RMS error of the fit vary. Figures 18ad, 19a-d, and 20a-d show the value of the
over the range 0.321.1 eV is 0.11 eV, Using the assignments  partial transmission coefficient as a function of thandj (or
for theJPS= 0++, 1++, 1—+, and 2++ spectra we are able  »' andj') quantum numbers for reactants and productsIR®
to assign 13 of the 14 features in the DORS curve. We believe = 0++, 1++, and -+. A number of the state-specific spectra
that feature 10, which does not appear in any of the other DORSshow negative values for the DORS. While we performed the
curves, may be the supernumerary stateJs1@is difficult to fit with the negative values included, Figures—13) omit the
conclusively assign feature 10, as the density of states in thatnegative values of the partial transmission coefficients. The
region is very high and the overlap is significant. The position physical significance of the negative values of the transmission
and the fit parameteks, andW, of the feature, however, indicate  coefficients is unclear, but we may presume that it arises from
that it may be due to a supernumerary transition state. Analysisinterference between the various resonances. Figure208
of the state-specific DORS curves (which are not shown) for depict clearly the contributions to the transition states from the
the product (1j') and reactant () channels indicate that there  various initial and final states. It is also easy to see the various
is flux in both channels. Considerably more flux, however, is stretch adiabatic and nonadiabatic transitions from the figures.

w
o

pHE) (V)

seen going into the product (L) channels than is coming out Figure 18a shows the partial transmission coefficients as a
of the reactant (1j) channel. The semiclassical energy from function of the initial channel given by{j) quantum numbers.
the VA curve forJ = 0 corrected fod = 6 by adding theBJ(J We see that most of the transitions are strongly stretch adiabatic.
+ 1) term indicates that the product side {lL2lynamical Stretch nonadiabaticity occurs mostly for states that have a high
bottleneck has an energy of about 0.84 eV. This is, however, degree of bend excitation. We also find a correlation between
much lower than thé&,ax of feature 10, which is 0.976 eV. the reactants’ rotational quantum numpand the bend quantum

As in the JPS = 2++ spectrum, several of the features numberv, of the transition state. We find that for collisions
possesg, values greater than 1. As explained earlier, this is that are stretch adiabatic the relatign— v,| < 3 holds quite
due to the nonzerd value, which causes the presence of states well for bothJ = 0 and 1. This relation has been has been
with the samey; and v, values, but differenK values. The observed earliér* in other systems such asH H,. We see a

TABLE 5: Emax Values for the Features in the DORS Curves, the Transition State Assignments, the Fit Parameters, the
Degeneracy of Each Transition State, and the Running Sum of Degeneracies fdPS = 6++

Emax (€V) running
feature (DORS) p1vaN] W, E, (eV) Ky degeneraciés sum

1 0.494 [00] 0.015 0.493 0.97 1 1
2 0.596 [0 0.021 0.590 0.87 1 2
3 0.695 [027 0.030 0.691 2.05 1,1 4
4 0.777 [s16] 0.011 0.767 0.28 4
5 0.784 [03%9 0.028 0.813 1.07 1,1 6
6 0.860 [16] 0.009 0.859 0.79 1 7
7 0.860 [0424 0.021 0.881 1.16 1,11 10
8 0.933 [11] 0.016 0.927 0.50 1 11
9 0.933 [058:39 0.017 0.932 1.27 1,11 13
10 0.963 [s1227 0.021 0.976 0.66 13
11 1.012 [127 0.027 0.993 1.59 1,1 15
12 1.012 [08249 0.017 1.015 1.78 1,111 19
13 1.058 [s20 0.008 1.057 0.82 19
14 1.100 [13%9 0.024 1.103 5.00 1,1 21

aMultiple degeneracies listed are for states with the sapend v,, but differentK. ? At the minimum of the DORS curve just before feature
6. ¢ At the minimum of the DORS curve just before feature 1The CRP data are available only up to 1.1 eV.
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=12 ..,24,(cpy=1j=1,

similar correlation in the data fal = 1 as well as shown in Earlier studie¥*?have shown that the features in the state-
Figures 19a and 20a. In contrast, there is no such correlationspecific spectra narrow as the energy is increased. This was
betweenj’ and v, or even betweerj and v, for the stretch seenr® as part of a trend for greater product-state specificity as
nonadiabatic transitions. the energy of the transition state threshold incred3€&iyures
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18b, 19a,b, and 20b show clearly how the transmission functions of Cl and Hrespectively, and’Sis an integral given
coefficient of a given transition state changes across the rangeby
of initial j or final ' values within a initialy (or final v')
manifold. We see that transition states that are highly bend 1°PIm = “ dE exp[—E/kBT]NJPS(E) (8)
excited (and thus have thresholds at higher energies than the ‘/2’

low bend excited states) tend to gate flux into a narrower range \yhereks is Boltzmann’s constant ar@PYE) is the CRP. The

of product channels than those with low bend quantum nUMbErS.jyieqral can be rewritten in terms of the density of reactive states,
We see that the ClHsystem shows the same product-state pPSE), as

specificity as seen in earlier studiésn systems such as #
H, and O+ Ho.

JP Y = E' JP
Supernumerary states of the first kind are also clearly seen l S(T) o j:) dE" exp[~E'/kgT] ﬂ) dE p S(E)
in Figures 18e-d and 20c,d. They have relatively large partial

transmission coefficients in the product channels. The figures Equation 4 shows that we may write the DORS as a sum of
also show that transitions through the supernumerary states ar&ontributions from the various transition statesHence, we
substantially stretch nonadiabatic. We can also identify super- @0 Write F*Sas a sum over contributions from the transition
numerary states of the second kind using these figures. Parts &t2t€sy

and c of Figure 19 show that the partial transmission coefficient
for the feature corresponding to the [Pgtate has a component

in the v = 1 manifold as well a strong component in the=

1 manifold. These components are possibly due to the super-

©)

(10)

M =3 m

Consequently, we can also wrk&Sas a sum over contributions

numerary state [sZB Since the influence of this state is not

clearly seen in the total DORS but is obvious in the state-specific
spectra, we may call it a supernumerary state of the second

kind.

State-Specific Rate CoefficientsThe JPSspecific thermal
rate coefficient,k’”S at a temperaturd for a bimolecular
reaction is given b3t

Bele(‘(-l-) IJPS(T)
hq)rel(T) QCI(T) QHH(T)
whereBeecis the fraction of reactants that collide on the reactive

2A" surface @r((T) is the relative translational partition function
of Cl with respect to H, Qc; andQun are the internal partition

SRUE @)

from the various transition states

T = 3 K

(11)

where KFYT) is the JPS and transition state-specific rate
constant.

By a similar procedure, if we utilize the initial state-specific
DORS,pf,ﬂS, in eq 9 we can calculate the initial-state-specific
rate constantkﬂis('l'), as a sum over contributions from the
various transition states.

ke =Y k(M)

12)
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TABLE 6: Contribution, kiPS(T), from Each Transition State, y, as a Percentage of the TotalPS-Resolved Rate Coefficient,
kIPXT), Shown in the Last Row in Units of cn? Molecule™® s71, at Temperatures of 300 and 800 K

k(M) K (M KM (M) KM
[yyX] 300K 800 K 300 K 800 K 300 K 800 K 300 K 800 K 300 K 800 K
[00°] 99.2 93.4 90.0 73.2 89.0 70.3 86.7 69.5
[011] 96.9 91.9 4.63 17.8 4.46 16.81 452 16.6
[02]  0.24 5.51 5.34 6.98 6.46 10.51 8.70 10.6
[031] 2.38 7.00 9.9¢3)  1.00 6.2€2)  1.22 3.7¢2) 176
[049 054 0.62 1.74¢3) 022 1.3¢4)  0.29 7.1¢5)  0.32
[051] 3.2(-4) 050 55(6)  0.11 2.7¢6) 922  6.1(6) 0.6
[069]  1.7(-8F  7.03) 1.9¢8)  7.1¢3)  15C7)  3.9(2) 357  6.8(2)
[071] 0.75 0.16
[109  25(5)  0.27 2.8¢5)  0.25 3.065)  0.25 3.4¢5)  0.27
[111] 42(-5)  0.38 1.9¢6)  6.9(2)  6.0(6)  99(2)  25-6)  6.7-2)
[129]  14(-7)  2.8(2) 1.8¢7)  3.02)  7.6C7)  6.1(2)  35(5)  9.9(2)
[131] 1.3(-7)  53(2)  24(8) 22(2) 1170  32(2)  15(7)  58(2)
[s10] 1.7(-4)  0.18 3.6(4)  0.30 3.9¢4) 031 4.7¢4)  0.36
[s12] 1.16)  4.7(2)
[s20] 1.3(-8)  1.7(2) 1.4-8)  1.4(2)  15c8) 162  17(8) 17(2)
ned 35(-9)  5.3(3)

KP{T) 7.83(-17) 1.83(-15) 3.85(-18) 4.60(-16) 7.84(-17) 2.23(-15) 7.61(17) 2.28(15) 5.38¢-17) 1.99¢15)
aNumbers in parentheses denote multiplicative powers of T@is feature was not assigned.

Table 6 shows thé”°as a percentage ¢f°S at tempera-  dynamical reaction threshold is defined tise energy at which
tures of 300 and 800 K, for the variod®S The table enables the state-specific reaction probability first reaches a value of
us to get a very detailed picture of the reaction, as we can see0.03. The VTST dynamical reaction threshold is defined as that
how much each transition state contributes to the tdR® transition state with the lowesE, for which the partial
specific rate constant of the reaction. Several interesting trendstransmission coefficient,,; is greater than or equal to 0.03.
are seen. We note that the contribution from a given state We see that the local maxima and minima of the solid curve
changes as the total angular momentum changes. At 300 K withare correlated with those of the dashed curve. The partial
J =0, the [00] state has almost all the contribution to the rate transmission coefficient for a given transition state is obtained
constant, but agincreases to 6, the contribution drops by about by fitting the state-specific DORS for a certain initial [) state
15%. At 800 K the drop in the contribution from the [Q8tate summed over all final states to a sum of line shape functions
whenJ increases from 0 to 6 is about 24%. Asncreases, a and is proportional to the reactive flux through that transition
greater contribution to the rate constant comes from bend excitedstate from the initial ¢, j) state. This allows us to relate the
states. For a given value df we can expect the contribution  partial transmission coefficient, and hence the coupling of a
to the rate constant to decrease monotonicallydscreases given initial (v, j) state to a particular transition state, to the
within a given v, manifold. This expectation is substantially — state-specific reactivity.
borne out; however, there are exceptions, most prominenty [04 For example, Figure 22a shows that as the rotational quantum
in 0++ at 300 K, [07] in 14++ at 300 K, and [09] in 1—+, number increases frojm= 0 toj = 2 for JPS= 0++, the
24+, and 6++ at 300 K. The contributions to the rate constant relative translational energy decreases. Looking at Figure 18a,
from the various transition states at 800 K almost always which shows us the partial transmission coefficient as a function
decrease monotonically as increases within a given; of rotational quantum number fdPS= 0+, we see that the
manifold. The supernumerary state has a greater contributionreactive flux out of stateg= 0 andj = 2 is mainly focused
than the corresponding variational transition state at both through the [0f] state. As different reactant states with
temperatures considered, except far0 at 800 K, where the increasing (and hence with increasing internal energy) focus
[10Y] state has a greater contribution than the fkipernu- reactive flux through the same [QGtate, the relative transla-
merary. tional energy at the quantal dynamical reaction threshold

Parts a-c of Figure 21 show the percentage contribution to decreases. When the excitation level reaghest, though, the
the JPS and state-specific rate coefficient from each transition reactive flux is no longer focused through the 0étate but
state as a function of initial rotational quantum number, for rather, as Figure 18a indicates, begins to pass through tfe [02
initial vibrational quantum number = 0, with JPS= 0++, state. Since the [P state is higher in energy than the [P0
1++, and -+, respectively. The figures show that the major state, this causes the relative translational energy at the quantal
contribution to a given initiald, j) state-specific rate coefficient  dynamical reaction threshold to rise. Hence, as for the H;
at a givenJPScomes from few transition states in a narrow reaction? it is possible to explain the dependence of state-
range of] values within thes manifold. Figures 1820 showed specific reactivity on the rotational quantum number by
that there is correlation between the reactants’ rotational considering how strongly the specific reactant state is coupled

guantum numbej and the bend quantum number of the to a given transition state.

transition state. We find here that the sajjine v,| < 3 relation Rotational Constants and Geometrical Interpretation of
helps in determining which transition state (with a givef the Dynamical Bottlenecks.We can obtain an estimate for the
contributes substantially to the state-specific rate coefficient (for rotational constantB, of the transition stateg by considering

a state with rotational quantum numbégr the E, values of the various transition states as a function of

Parts a-c of Figure 22 show plots of the relative translational the total angular momenturd. The E, value for a given
energy at the dynamical reaction thresholds for accurate quantunresonance is a function dfand varies byB,J(J + 1) as the
(solid) and VTST (dashed) as a function of the rotational total angular momentum chang®s$* As noted above, the
quantum number of the = 0 state for varioudPS The quantal density of reactive states increases as the total angular momen-
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Figure 21. Percentage contribution to tH®S and state-specific rate iv=0)

coefficient as a function of the rotational quantum numpeior
vibrational quantum number = 0 for (a) JPS= 0++, (b) JPS=
1++, and (c)JPS= 1—+.

Figure 22. Relative translational energy at the dynamical reaction
threshold as a function of the rotational quantum numpdor
vibrational quantum number= 0 from accurate quantum (solid) and
tum increases, and this tends to obscure the features in the highefrom VTST (dashed) for (a)PS= 0+, (b) JPS= 1++, and (c)JPS
total angular momentum DORS curves. We therefore chose four — 1—+. See text for the definitions of the dynamical reaction thresholds.
prominent and representative peaks that are easily distinguishedrom the saddle point, we see that as we get closer to the saddle
in the DORS curve to obtain an estimate of the rotational point, the value ofB increases; i.e., the moment of inertia
constant. The states we chose were’[0B1(], [109, and, a decreases. This indicates that the transition state structure
state both stretch- and bend-excited,’[1Table 7 shows the  ‘“tightens” as we approach the saddle point and is “looser” the
fitted E, values for each of these states for different values of further we are from it. We find that the quantal estimates of
the total angular momentum and the resulting quantal estimatefollow this trend as well. We can calculate the moment of inertia
for the rotational constant. from the geometry at the maximum of the vibrationally adiabatic
We can also obtain a value for the rotational constant from curveVy(y, s). Table 7 also shows the value Bfcalculated by
the moment of inertid, of the structure corresponding to the program ABCRATE at the dynamical bottlenecks of the
transition statey since B = #A2/2I. Figure 23 shows the VA VA curves for the various transition states. A state such d§,[12
curves for the four states considered above, the valuBstifng which is both bend- and stretch-excited, is tighter than a state
the reaction path, and the values of the distances between thesuch as [1f], which has no bend excitations, should,
three atoms involved the reaction at various points along the therefore, be larger for the tighter state, and this trend is observed
reaction path. From the plot of thi&value versus the distance in both the quantal and semiclassical estimatesBjorThis
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TABLE 7: Quantal Estimate for the Rotational Constant B, Along with the Value of B Calculated from the Moment of Inertia

J=0 J=2 J=6 B (eV) from B (eV) from B (eV) from
[vivK] E, (eV) E, (eV) E, (eV) J=0and6 J=2and6 ABCRATE?
[00 0.4817 0.4834 0.4934 2.8010* 2.80x 104 2.84x 104
[s107] 0.7553 0.7568 0.7666 2.7010* 2.73x 10 2.28x 10
[109 0.8508 0.8520 0.8591 197104 1.96x 104 1.89x 104
[129 0.9821 0.9835 0.9929 2.5710% 2.62x 10 2.12x 10

aUsing the moment of inertia as calculated by ABCRATE witk 0.

3 g6 . various transition states as well, as can be seen fromhe
S 05 | | andrciy distances.
)
E, 04 | 4+ ] Lifetimes of the Transition States. By considering the
g g'g I / \\ transition states as resonances, we can utilize the language of
gy L // I scattering theory, wherein we consider the resonances as poles
0.0 = in the S matriX¢ For each transition state (or resonanggjve
b) 44 - may write the energy of the corresponding pole in the scattering
s 10 ///—\\/\ matrix a$
08 F— —
2 o7 | R \/F\E\% E=E,—i L 13
S 06 | V\V 5717 (13)
“oos t
04 whereE, is the real part of the energy of the resonance, &nd
9 a9 . its width. The width is related to the lifetime, by the relatiof
<25t .
JOPLR // _%h 14
10 | y
m 05 B . . . . .
0.0 whereh is h/2z. We note that this is the lifetime at the center
9 5. s of the resonance, and it should not be confused with the lifetime
averaged over the resonance width; the latter quantity is a factor
25 '\\ —12° of two smaller. For the parabolic effective energy bafrfér
< 27 ~— LT 12 g assumption that we use, the lifetime is related to the width
515 | T~ ] 1153 parameterW, a$
1t 11 =
h
05 | 1 05 T = 15
0 0 ¢ AW, 13)
-11 08 05 03 00 03 05 08 1.1 - .
s(A) Table 9 shows the lifetimes of all the assigned states for the
Figure 23. Reaction path properties as functions of reaction coordinate var_lousJPSv_aIues we have conS|dered: E)_(amlnatlon of f|t'_s In
s (a) Vuer and VA curve for [06]; (b) VA curves for [10] and [12]; which we varied the widths of the peaks indicates that the widths
(¢) B = 1/(2); (d) H—CI (dark line) and H-H (light line) bond are known to about 15%, except for the {pstate, where the
distances. uncertainty is larger +30%). Certain definite trends in the

values of the lifetimes are observed, and these trends involve

provides a satisfying confirmation of the fact that the dynamical variations larger than these uncertainties. We note that the
bottleneck is localized even for accurate quantal dynamics. lifetime of a particular resonance is related to the imaginary

Since the reaction-path calculationsBfagree so well with part of the energy in eq 13 by egs 14 and 15, while Eye
the accurate quantal valuesBf, we can use the reaction-path  value of the resonance corresponds to the real part of the energy.
calculations to get insight into the geometries of the various We find that the lifetime for a particular transition state is nearly
dynamical bottlenecks. The first section of Table 8, labeled constant as the total angular momentum changes. This trend
semiclassical, shows the values obtained from the maxima offor a nearly constant lifetime akchanges can be compared to
the corresponding VA curves. For the second section, labeledthe nearly constant value for th® of the transition state ab
guantal, we tabulate the values at the nearest point along thechanges. We also see that within the= 0 (non-stretch-excited)
MEP that has & value in exact agreement with the values manifold, the lifetime first seems to decreasevasncreases
calculated fromJ = 0 and 6 in Table 7. We see that the from 0 to 4 and then after, = 4 begins increasing again. The
semiclassical and quantal estimates of the geometry of theinitial decrease in the lifetime is consistent with the non-stretch-
different dynamical bottlenecks agree quite well. There are, excited VA curves which, as the bend quantum number
however, differences in the locations of dynamical bottlenecks increases, show that tunneling becomes more facile, thus
as predicted by the quantum calculations and the semiclassicaincreasing the width of the features and decreasing the lifetime
calculations. Thus, the semiclassical estimate of the location of of the transition states. We are unsure of why the lifetime would
the bottleneck for the [ state is closer to the saddle point (a then increase after a certain level of bend excitation. Not enough
“looser” transition state) than the quantal estimate. For the stretch-excited states are present to observe the trend with the
stretch-excited states [10 [s10°], and [20], however, the bending energy for the stretch-excited states.
guantal estimates are “tighter” and the dynamical bottlenecks The lifetimes obtained from the width parameters of the fits
are predicted to be closer to the saddle point than the semiclas+to the quantum data can be compared to the lifetimes obtained
sical estimations. This is reflected in the geometries of the from the VA curves. For each transition statdéisted in Table
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TABLE 8: Geometries and Potential Energies at Dynamical Bottlenecks

semiclassical quantal
[V1V2K] S (A) r'ciH (A) I'HH (A) V(eV) S (A) I'ciH (A) I'HH (A) V(eV)
[007] —0.01 1.41 0.98 0.511 —0.07 1.49 0.87 0.499
[s107] 0.33 1.28 1.54 0.729 0.13 1.30 1.23 0.541
[109 —0.53 2.00 0.75 0.846 —0.48 1.95 0.75 0.845
[129 0.27 1.28 1.44 0.830 0.19 1.29 1.32 0.741

TABLE 9: Lifetimes (fs) of the Transition State Resonances
for Various JPS from Quantum Results and the Comparison
to Lifetimes from the Semiclassical Vibrationally Adiabatic

mechanics. In this paper we have analyzed the accurate quantal
microcanonical-ensemble rate constants for the- €, reaction
by resolving and characterizing the quantized features in the

Curves?

cumulative reaction probabilities that contain all the dynamical

[vws] O++ 14+ 1-+ 24+ 6++ semiclassical information in these rate constants. We examined total energies
[00°] 14 14 14 14 8.6 up to 1.1 eV and total angular momentum in the rafige0 to
[8%1] o 10 10 10 10 68-25 J=6. We find in all cases that the reaction is controlled by the
%03% 7 ; ; ; 56 guantized nature of the transition state energy levels. We have
[049] 6 7 9 10 51 assigned the energy level spectrum for the transition state region
[05Y] 9 10 15 12 4.7 of this atom-diatom system by assuming it to be a triatomic
[067] 26 25 15 12 4.4 system with a missing degree of freedom, which is the reaction
[07%] 5 4.2 coordinate at the transition state. We find that the assumption
[102] 2r 25 25 23 34.0 of local vibrational adiabaticity is useful for labeling the levels
[11Y 16 16 11 14 21.8 .
[129 16 16 1 9 15.7 of the transition state, although, as forHH, and O+ Ha, the
[131] 13 10 9 10 12.1 reaction is not globally vibrationally adiabatic. We analyzed
[s17 28 22 21 19 20.3 the state-specific reaction probabilities as well, from which we
{Ség]] 20 20 - 1208 ??(-571 obtain a detailed picture of the state-to-state reactivity of the
S .

system.

We also calculated thdPSspecific and state-specific rate
coefficients for the CH H, reaction forJPS= 0++, 1++,
and 1-+. Examination of the contribution from each transition

9, we fit a segment of the VA curve that extends approximately Stateé to theJPSspecific rate coefficient as a function of the

+0.01 A on each side of the dynamical bottleneck to a parabolic 'éactant’s rotational quantum number allows us to explain the
function dependence of the state-specific reactivity on the reactant’s

rotational quantum number in terms of the coupling of a
particular reactant state to a specific transition state.

Sometimes there are two sets of resonances with the same
sets of quantum numbers. We assign these to metastable states
whereVy(y, 9) is the vibrationally adiabatic energy,’ is the centered at different positions along the reaction path. The
maximum of the VA curve in the region of the dynamical higher-energy one is called a variational transition state

aThe lifetimes in the five columns headed B?Sare from the
accurate quantal calculatiorsThese results are fol = 0 and are
obtained from calculations of VA curves performed using ABCRATE.

Vir9 =V = k(5= €) (16)

bOtt'enECk,ky is a force constant (dEﬁned here as the negative resonance, and the lower-energy one is called a supernumerary
of the usual force constangjs the distance along the reaction  transition state resonance. All transition state resonances affect
path, ands) is the position of the dynamical bottleneck along at least one state-selected reaction probability; they vary in their
the reaction path. Using a quantum mechanical analysis of theeffect on the total reaction probability. All variational transition
tunneling through an effective potential barrféf,it can be  state resonances and some supernumerary transition state
shown that the parametéy is related to the width parameter  resonances (these are called supernumeraries of the first kind)
W, by the relation have nonzero transmission coefficiertfor the total reactive
flux, and one can identify a continuous rangecofalues from
h ky almost zero to about unity. Those supernumeraries for which
W, = 27N u a7) the « associated with the total reactive flux is essentially zero
(too small for us to observe their effect) are called supernu-
whereu is the reduced mass of the isoinertial coordinate system meraries of the second kind. In this paper we assigned
in which Vy(y, s) is expressed. We then calculate the lifetime vibrational quantum numbers; and », to twelve different
using eq 15. The final column of Table 9 lists the lifetimes variational transition state resonances, three different supernu-
calculated using the semiclassical VA curves for zero total meraries of the first kind, and one supernumerary of the second
angular momentum. We see that the semiclassical lifetimes arekind. Of the twelve variational transition state resonances, Six
in reasonably good agreement with most of the quantal were identified for four of thdPSblocks, namelPS= 0++,
estimates. We note, however, that the semiclassical lifetimes1—+, 2++, and 6++, five were identified forJPS= 1—+,
in the »; = 0 manifold monotonically decrease with increasing 1++, 2++, and 6++, and one was identified only falPS=
v2, while the quantal lifetimes in the same manifold decrease 1++. Of the three supernumeraries of the first kind, two were
and then increase aftes = 4. identified forJPS= 0++, 1—+, 2++, and 6+, and one was
) identified only for JPS= 6++. The supernumerary of the
V. Conclusions second kind was identified only falPS= 1++.
The analysis of rate constants in terms of the energies, By comparing the energetic positions of the resonances for
lifetimes, and transmission coefficients of quantized transition different total angular momentum, we have obtained an estimate
states provides the finest level of detail allowed by quantum for the rotational constar for four of the transition state energy
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levels, including three variational transition states and one
supernumerary transition state. The variation in the value o
the rotational constant between the various transition states
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